834 research outputs found

    Dilatonic current-carrying cosmic strings

    Full text link
    We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely the energy per unit length U and the tension T, by picking a privileged spacelike or timelike coordinate direction; in the latter case, a phase frequency threshold occurs that is similar to what is found in ordinary neutral current-carrying cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e. on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium configuration, also known as vortons, whose stability, depending on the very short distance (unknown) physics, can lead to catastrophic consequences on the evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to appear in Phys. Rev.

    Involvement of autophagy in hypoxic-excitotoxic neuronal death.

    Get PDF
    Neuronal autophagy is increased in numerous excitotoxic conditions including neonatal cerebral hypoxia-ischemia (HI). However, the role of this HI-induced autophagy remains unclear. To clarify this role we established an in vitro model of excitotoxicity combining kainate treatment (Ka, 30 µM) with hypoxia (Hx, 6% oxygen) in primary neuron cultures. KaHx rapidly induced excitotoxic death that was completely prevented by MK801 or EGTA. KaHx also stimulated neuronal autophagic flux as shown by a rise in autophagosome number (increased levels of LC3-II and punctate LC3 labeling) accompanied by increases in lysosomal abundance and activity (increased SQSTM1/p62 degradation, and increased LC3-II levels in the presence of lysosomal inhibitors) and fusion (shown using an RFP-GFP-LC3 reporter). To determine the role of the enhanced autophagy we applied either pharmacological autophagy inhibitors (3-methyladenine or pepstatinA/E64) or lentiviral vectors delivering shRNAs targeting Becn1 or Atg7. Both strategies reduced KaHx-induced neuronal death. A prodeath role of autophagy was also confirmed by the enhanced toxicity of KaHx in cultures overexpressing BECN1 or ATG7. Finally, in vivo inhibition of autophagy by intrastriatal injection of a lentiviral vector expressing a Becn1-targeting shRNA increased the volume of intact striatum in a rat model of severe neonatal cerebral HI. These results clearly show a death-mediating role of autophagy in hypoxic-excitotoxic conditions and suggest that inhibition of autophagy should be considered as a neuroprotective strategy in HI brain injuries

    Variational Approach to the Modulational Instability

    Full text link
    We study the modulational stability of the nonlinear Schr\"odinger equation (NLS) using a time-dependent variational approach. Within this framework, we derive ordinary differential equations (ODEs) for the time evolution of the amplitude and phase of modulational perturbations. Analyzing the ensuing ODEs, we re-derive the classical modulational instability criterion. The case (relevant to applications in optics and Bose-Einstein condensation) where the coefficients of the equation are time-dependent, is also examined

    Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions

    Full text link
    This investigation is devoted to the solutions of Einstein's field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in (2+1)(2+1)-dimensional spacetimes. In the case where the radial pressure vanishes, we show that there exists a solution of the equations that represents the gravitational collapse of an anisotropic fluid, and this collapse will eventually form a black hole, even when it is constituted by the phantom energy.Comment: 10 page

    Asteroseismology of Eclipsing Binary Stars in the Kepler Era

    Full text link
    Eclipsing binary stars have long served as benchmark systems to measure fundamental stellar properties. In the past few decades, asteroseismology - the study of stellar pulsations - has emerged as a new powerful tool to study the structure and evolution of stars across the HR diagram. Pulsating stars in eclipsing binary systems are particularly valuable since fundamental properties (such as radii and masses) can determined using two independent techniques. Furthermore, independently measured properties from binary orbits can be used to improve asteroseismic modeling for pulsating stars in which mode identifications are not straightforward. This contribution provides a review of asteroseismic detections in eclipsing binary stars, with a focus on space-based missions such as CoRoT and Kepler, and empirical tests of asteroseismic scaling relations for stochastic ("solar-like") oscillations.Comment: 28 pages, 12 figures, 2 tables; Proceedings of the AAS topical conference "Giants of Eclipse" (AASTCS-3), July 28 - August 2 2013, Monterey, C

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Characteristics of the Moveable Middle: Opportunities Among Adults Open to COVID-19 Vaccination

    Get PDF
    Introduction: Focusing on subpopulations that express the intention to receive a COVID-19 vaccination but are unvaccinated may improve the yield of COVID-19 vaccination efforts. Methods: A nationally representative sample of 789,658 U.S. adults aged ≥18 years participated in the National Immunization Survey Adult COVID Module from May 2021 to April 2022. The survey assessed respondents’ COVID-19 vaccination status and intent by demographic characteristics (age, urbanicity, educational attainment, region, insurance, income, and race/ethnicity). This study compared composition and within-group estimates of those who responded that they definitely or probably will get vaccinated or are unsure (moveable middle) from the first and last month of data collection. Results: Because vaccination uptake increased over the study period, the moveable middle declined among persons aged ≥18 years. Adults aged 18–39 years and suburban residents comprised most of the moveable middle in April 2022. Groups with the largest moveable middles in April 2022 included persons with no insurance (10%), those aged 18–29 years (8%), and those with incomes below poverty (8%), followed by non-Hispanic Native Hawaiian or other Pacific Islander (7%), non-Hispanic multiple or other race (6%), non-Hispanic American Indian or Alaska Native persons (6%), non-Hispanic Black or African American persons (6%), those with below high school education (6%), those with high school education (5%), and those aged 30–39 years (5%). Conclusions: A sizable percentage of adults open to receiving COVID-19 vaccination remain in several demographic groups. Emphasizing engagement of persons who are unvaccinated in some racial/ethnic groups, aged 18–39 years, without health insurance, or with lower income may reach more persons open to vaccination
    corecore