106 research outputs found

    Effect of beta-Dystroglycan Processing on Utrophin / DP116 Anchorage in Normal and MDX Mouse Schwann Cell Membrane

    Full text link
    In the peripheral nervous system, utrophin and the short dystrophin isoform (Dp116) are co-localized at the outermost layer of the myelin sheath of nerve fibers; together with the dystroglycan complex. In peripheral nerve, matrix metalloproteinase (MMP) creates a 30 kDa fragment of beta-dystroglycan, leading to a disruption of the link between the extracellular matrix and the cell membrane. Here we asked if the processing of the beta-dystroglycan could influence the anchorage of Dp116 or/and utrophin in normal and mdx Schwann cell membrane. We showed that MMP-9 was more activated in mdx nerve than in wild-type one. This activation leads to an accumulation of the 30 kDa beta-dystroglycan isoform and have an impact on the anchorage of Dp116 and utrophin isoforms in mdx Schwann cells membrane. Our results showed that Dp116 had greater affinity to the full length form of beta-dystroglycan than the 30 kDa form. Moreover, we showed for the first time that the short isoform of utrophin (Up71) was over-expressed in mdx Schwann cells compared to wild-type. In addition, this utrophin isoform (Up71) seems to have greater affinity to the 30 kDa beta-dystroglycan which could explain a more stabilization of this 30 kDa at the membrane compartment. Our results highlight the potential participation of the short utrophin isoform and the cleaved form of beta-dystroglycan in mdx Schwann cell membrane architecture

    Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (<it>SMN1</it>) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil.</p> <p>Methods</p> <p>Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at <it>P </it>< 0.05. For the remaining analyses, the Student's two-tail <it>t </it>test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at <it>P </it>< 0.05.</p> <p>Results</p> <p>Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific.</p> <p>Conclusions</p> <p>Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK inhibitors as a therapeutic strategy for SMA and for other degenerative diseases characterized by muscular atrophy and postsynaptic immaturity.</p
    corecore