758 research outputs found

    Spatial, Seasonal, and Solar Cycle Variations of the Martian Total Electron Content (TEC): Is the TEC a Good Tracer for Atmospheric Cycles?

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.We analyze 10 years of Mars Express total electron content (TEC) data from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument. We describe the spatial, seasonal, and solar cycle behavior of the Martian TEC. Due to orbit evolution, data come mainly from the evening, dusk terminator and postdusk nightside. The annual TEC profile shows a peak at Ls = 25–75° which is not related to the solar irradiance variation but instead coincides with an increase in the thermospheric density, possibly linked with variations in the surface pressure produced by atmospheric cycles such as the CO or water cycles. With the help of numerical modeling, we explore the contribution of the ion species to the TEC and the coupling between the thermosphere and ionosphere. These are the first observations which show that the TEC is a useful parameter, routinely measured by Mars Express, of the dynamics of the lower-upper atmospheric coupling and can be used as tracer for the behavior of the thermosphere.©2018. The Authors.B. S. -C. and M. L. acknowledge support through STFC grant ST/N000749/1. ESA-ESTEC Faculty and Europlanet funding are also gratefully acknowledged. MEX MARSIS RDR and EDR data can be downloaded from the ESA-PSA archive, TIMED-SEE data at the University of Colorado's website (http://lasp.colorado.edu/lisird/index.html), REMS data at the NASA Planetary Data System (http://atmos.nmsu.edu/PDS/data/mslrem_1001/DATA/), the MCD model at the Mars Climate Database web interface (http://www-mars.lmd.jussieu.fr/mars/access.html), and the IPIM model at the IRAP CDPP web interface (http://transplanet.irap.omp.eu/)

    Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: a summary

    Get PDF
    Mars Express, the first European interplanetary mission, carries the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) to search for ice and water in the Martian subsurface. Developed by an Italian–US team, MARSIS transmits low-frequency, wide-band radio pulses penetrating below the surface and reflected by dielectric discontinuities linked to structural or compositional changes. MARSIS is also a topside ionosphere sounder,transmitting a burst of short, narrow-band pulses at different frequencies that are reflected by plasma with varying densities at different altitudes.The radar operates since July 2005, after the successful deployment of its 40 m antenna, acquiring data at altitudes lower than 1200 km. Subsurface sounding (SS)data are processed on board by stacking together a batch of echoes acquired at the same frequency. Onground, SS data are further processed by correlating the received echo with the transmitted waveform and compensating de-focusing caused by the dispersive ionosphere. Ground processing of active ionospheric sounding (AIS)data consists in the reconstruction of the electron density profile as a function of altitude. MARSIS observed the internal structure of Planum Boreum outlining the Basal Unit, an icy deposit lying beneath the North Polar Layered Deposits thought to have formed in an epoch in which climate was markedly different from the current one.The total volume of ice in polar layered deposits could be estimated, and parts of the Southern residual ice cap were revealed to consist of 10 m of CO2 ice. Radar properties of the Vastitas Borealis Formation point to the presence of large quantities of ice buried beneath the surface. Observations of the ionosphere revealed the complex interplay between plasma, crustal magnetic field and solar wind, contributing to space weather studies at Mars. The presence of three-dimensional plasma structures in the ionosphere was revealed for the first time. MARSIS could successfully operate at Phobos, becoming the first instrument of its kind to observe an asteroid-like body. The main goal pursued by MARSIS, the search for liquid water beneath the surface, remains elusive. However, because of the many factors affecting detection and of the difficulties in identifying water in radar echoes, a definitive conclusion on its presence cannot yet be drawn

    Interpretation of Radar Sounder MARSIS Data from Lucus Planum, Mars: A Complex Geological Setting

    Get PDF
    Lucus Planum (LP) is a Martian plain located in the central part of the Medusae Fossae Formation (MFF). This geological unit is composed of pyroclastic flows or airfall [1-2], and paleopolar deposits or atmospherically-deposited icy dust [3]. For more than a decade the MFF has been probed by the Mars Express MARSIS and Mars Reconnaissance Orbiter SHARAD synthetic-aperture low-frequency radars, which revealed that the dielectric permittivity of the MFF subsurface is consistent with either a substantial component of water ice or a low-density material [4-5]. Here we report the results of our investigation of Lucus Planum: we processed 238 MARSIS orbits acquired across an area approximately 750,000 km2 in extent, and identified the locations of subsurface reflectors in this plain to unprecedented detail. Our work revealed 97 reflectors, mostly concentrated in the eastern, SW and NW sectors of LP. By estimating the thicknesses of strata laying on top of a theoretical basal surface obtained by interpolation of MOLA elevations around the plain, and correlating them with the apparent depth calculated from the radar pulse return times, we were able to estimate the dielectric constants of subsurface materials in the three sectors. The calculated values of dielectric constant in the eastern and SW sectors were 2.3, suggesting the presence of highly porous material, possibly pyroclastic deposits, in agreement with earlier interpretations [5]. The value of dielectric constant in the NW sector was 4.5, implying the presence of denser materials. In the central area of the plain we obtained only a few strong echoes, related to shallow strata and pedestal craters. The subsurface layers here attenuate the radar pulses, suggesting a material with dielectric characteristics different than those at the margins of LP. Interpretation of these findings is not unique and more investigations are needed to conclusively establish the nature of deposits forming Lucus Planum, but the evidence clearly points to a complex sequence of events, involving different types of geological processes. [1] Tanaka (2000) Icarus, 144, 254-266. [2] Kerber et al (2011) Icarus, 216, 212-220. [3] Schultz & Lutz (1988) Icarus, 73, 91-141. [4] Watters et al (2007) Science, 318, 1125-1128. [5] Carter et al (2009) Icarus, 199, 295-302

    Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV

    Full text link
    The pair production of Z bosons is studied using the data collected by the L3 detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189 GeV. All the visible final states are considered and the cross section of this process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final states containing b quarks are enhanced by a dedicated selection and their production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02 (syst.) pb. Both results are in agreement with the Standard Model predictions. Limits on anomalous couplings between neutral gauge bosons are derived from these measurements

    Search for Scalar Leptons in e+e- collisions at \sqrt{s}=189 GeV

    Full text link
    We report the result of a search for scalar leptons in e+e- collisions at 189 GeV centre-of-mass energy at LEP. No evidence for such particles is found in a data sample of 176 pb^{-1}. Improved upper limits are set on the production cross sections for these new particles. New exclusion contours in the parameter space of the Minimal Supersymmetric Standard Model are derived, as well as new lower limits on the masses of these supersymmetric particles. Under the assumptions of common gaugino and scalar masses at the GUT scale, we set an absolute lower limit on the mass of the lightest scalar electron of 65.5 Ge

    Search for Low Scale Gravity Effects in e+e- Collisions at LEP

    Get PDF
    Recent theories propose that quantum gravity effects may be observable at LEP energies via gravitons that couple to Standard Model particles and propagate into extra spatial dimensions. The associated production of a graviton and a photon is searched for as well as the effects of virtual graviton exchange in the processes: e+e- -> gamma gamma, ZZ, WW, mu mu, tau tau, qq and ee No evidence for this new interaction is found in the data sample collected by the L3 detector at LEP at centre-of-mass energies up to 183 GeV. Limits close to 1 TeV on the scale of this new scenario of quantum gravity are set

    Formation of the ηc\eta_c in Two-Photon Collisions at LEP

    Full text link
    The two-photon width Γγγ\Gamma_{\gamma\gamma} of the ηc\eta_c meson has been measured with the L3 detector at LEP. The ηc\eta_c is studied in the decay modes π+π−π+π−\pi^+\pi^-\pi^+\pi^-, π+π−\pi^+\pi^-K+^+K−^-, Ks0_s^0K±π∓^\pm\pi^\mp, K+^+K−π0^-\pi^{0}, π+π−η\pi^+\pi^-\eta, π+π−ηâ€Č\pi^+\pi^-\eta', and ρ+ρ−\rho^+\rho^- using an integrated luminosity of 140 pb−1^{-1} at s≃91\sqrt{s} \simeq 91 GeV and of 52 pb−1^{-1} at s≃183\sqrt{s} \simeq 183 GeV. The result is Γγγ(ηc)=6.9±1.7(stat.)±0.8(sys.)±2.0\Gamma_{\gamma\gamma}(\eta_c) = 6.9 \pm 1.7 (stat.) \pm 0.8 (sys.) \pm 2.0(BR) keV. The Q2Q^2 dependence of the ηc\eta_c cross section is studied for Q2<9Q^2 < 9 GeV2^{2}. It is found to be better described by a Vector Meson Dominance model form factor with a J-pole than with a ρ\rho-pole. In addition, a signal of 29±1129 \pm 11 events is observed at the χc0\chi_c0 mass. Upper limits for the two-photon widths of the χc0\chi_c0, χc2\chi_c2, and ηcâ€Č\eta_c' are also given

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference

    Direct Observation of Longitudinally Polarised W Bosons

    Get PDF
    The three different helicity states of W bosons, produced in the reaction e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of the scattering angle between the W- and the direction of the e- beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.) +/- 0.016(syst.) in agreement with the expectation from the Standard Model

    Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at \sqrt{s} = 189 GeV

    Full text link
    A search for the lightest neutral scalar and neutral pseudoscalar Higgs bosons in the Minimal Supersymmetric Standard Model is performed using 176.4 pb^-1 of integrated luminosity collected by L3 at a center-of-mass energy of 189 GeV. No signal is observed, and the data are consistent with the expected Standard Model background. Lower limits on the masses of the lightest neutral scalar and pseudoscalar Higgs bosons are given as a function of tan(beta). Lower mass limits for tan(beta)>1 are set at the 95% confidence level to be m_h > 77.1 GeV and m_A > 77.1 GeV
    • 

    corecore