433 research outputs found

    Coastal fish indicators response to natural and anthropogenic drivers–variability at temporal and different spatial scales

    Get PDF
    AbstractEcological indicators are increasingly used in marine and freshwater management but only few are developed towards full operationalization with known patterns of variability and documented responses to natural and anthropogenic environmental drivers. Here, we evaluate potential sources of indicator variability at two different spatial scales in three coastal fish-based indicators of environmental status in the Baltic Sea; abundance of cyprinids, abundance of perch and the proportion of larger perch. The study was performed on a data set covering 41 monitoring areas subject to different levels of anthropogenic impact, at a latitudinal range of 56–66°N and a salinity range of 2–8. Interannual variation was clearly minor relative to spatial variation. Small-scale spatial variation was related to water depth, wave exposure and water temperature. The remaining variation was assessed in relation to differences in natural and anthropogenic drivers between monitoring areas. Cyprinids showed a clear inverse relationship to water transparency, which was used as a proxy for eutrophication, indicating increased abundances in nutrient enriched areas. None of the indicators showed an expected negative relationship to the level of coastal commercial fisheries catches. Rather, a positive relationship for Perch suggested that the coastal fisheries were concentrated to areas with strong perch populations in the studied areas. The effect of salinity and climate (temperature during the growth season) among monitoring areas were small. The results emphasize the importance of assigning area-specific boundary levels to define good environmental status in the coastal fish indicators, in order to account for natural sources of variability. Further, although long-term monitoring in reference areas is crucial for obtaining a historical baseline, our results suggest that the status assessment of coastal fish would generally gain precision by increasingly including spatially based assessments. We propose that similar analytical approaches could be applied to other ecosystem components, especially in naturally heterogenic environments, in order to separate indicator variability attributed to potential anthropogenic impact

    Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran

    Get PDF
    De Bruycker R, Tran L-S, Carstensen H-H, et al. Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran. COMBUSTION AND FLAME. 2017;176:409-428.Saturated cyclic ethers are being proposed as next-generation bio-derived fuels. However, their pyrolysis and combustion chemistry has not been well established. In this work, the pyrolysis and combustion chemistry of 2-methyl-tetrahydrofuran (MTHF) was investigated through experiments and detailed kinetic modeling. Pyrolysis experiments were performed in a dedicated plug flow reactor at 170 kPa, temperatures between 900 and 1100 K and a N-2 (diluent) to MTHF molar ratio of 10. The combustion chemistry of MTHF was investigated by measuring mole fraction profiles of stable species in premixed flat flames at 6.7 kPa and equivalence ratios 0.7, 1.0 and 1.3 and by determining laminar burning velocities of MTHF/air flat flames with unburned gas temperatures of 298, 358 and 398 K and equivalence ratios between 0.6 and 1.6. Furthermore, a kinetic model for pyrolysis and combustion of MTHF was developed, which contains a detailed description of the reactions of MTHF and its derived radicals with the aid of new high-level theoretical calculations. Model calculated mole fraction profiles and laminar burning velocities are in relatively good agreement with the obtained experimental data. At the applied pyrolysis conditions, unimolecular decomposition of MTHF by scission of the methyl group and concerted ring opening to 4-penten-1-ol dominates over scission of the ring bonds; the latter reactions were significant in tetrahydrofuran pyrolysis. MTHF is mainly consumed by hydrogen abstraction reactions. Subsequent decomposition of the resulting radicals by beta-scission results in the observed product spectrum including small alkenes, formaldehyde, acetaldehyde and ketene. In the studied flames, unimolecular ring opening of MTHF is insignificant and consumption of MTHF through radical chemistry dominates. Recombination of 2-oxo-ethyl and 2-oxo-propyl, primary radicals in MTHF decomposition, with hydrogen atoms and carbon-centered radicals results in a wide range of oxygenated molecules. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved

    Entrepreneurs’ age, institutions, and social value creation goals: a multi-country study

    Get PDF
    This study explores the relationship between an entrepreneur's age and his/her social value creation goals. Building on the lifespan developmental psychology literature and institutional theory, we hypothesize a U-shaped relationship between entrepreneurs’ age and their choice to create social value through their ventures, such that younger and older entrepreneurs create more social value with their businesses while middle age entrepreneurs are relatively more economically and less socially oriented with their ventures. We further hypothesize that the quality of a country’s formal institutions in terms of economic, social, and political freedom steepen the U-shaped relationship between entrepreneurs’ age and their choice to pursue social value creation as supportive institutional environments allow entrepreneurs to follow their age-based preferences. We confirm our predictions using multilevel mixed-effects linear regressions on a sample of over 15,000 entrepreneurs (aged between 18 and 64 years) in 45 countries from Global Entrepreneurship Monitor data. The findings are robust to several alternative specifications. Based on our findings, we discuss implications for theory and practice, and we propose future research directions

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Surface electrons at plasma walls

    Full text link
    In this chapter we introduce a microscopic modelling of the surplus electrons on the plasma wall which complements the classical description of the plasma sheath. First we introduce a model for the electron surface layer to study the quasistationary electron distribution and the potential at an unbiased plasma wall. Then we calculate sticking coefficients and desorption times for electron trapping in the image states. Finally we study how surplus electrons affect light scattering and how charge signatures offer the possibility of a novel charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse

    Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations

    Get PDF
    Empirical relationships between phytoplankton biomass and nutrient concentrations established across a wide range of different ecosystems constitute fundamental quantitative tools for predicting effects of nutrient management plans. Nutrient management plans based on such relationships, mostly established over trends of increasing rather than decreasing nutrient concentrations, assume full reversibility of coastal eutrophication. Monitoring data from 28 ecosystems located in four well-studied regions were analyzed to study the generality of chlorophyll a versus nutrient relationships and their applicability for ecosystem management. We demonstrate significant differences across regions as well as between specific coastal ecosystems within regions in the response of chlorophyll a to changing nitrogen concentrations. We also show that the chlorophyll a versus nitrogen relationships over time constitute convoluted trajectories rather than simple unique relationships. The ratio of chlorophyll a to total nitrogen almost doubled over the last 30-40 years across all regions. The uniformity of these trends, or shifting baselines, suggest they may result from large-scale changes, possibly associated with global climate change and increasing human stress on coastal ecosystems. Ecosystem management must, therefore, develop adaptation strategies to face shifting baselines and maintain ecosystem services at a sustainable level rather than striving to restore an ecosystem state of the past. © 2011 American Chemical Society.This research is a contribution to the Thresholds Integrated Project (contract FP6-003933-2) and WISER (contract FP7-226273), funded by the European Commission.Peer Reviewe

    Long-Term Health Outcomes in Children Born to Mothers with Diabetes: A Population-Based Cohort Study

    Get PDF
    BACKGROUND: To examine whether prenatal exposure to parental type 1 diabetes, type 2 diabetes, or gestational diabetes is associated with an increased risk of malignant neoplasm or diseases of the circulatory system in the offspring. METHODS/PRINCIPAL FINDINGS: We conducted a population-based cohort study of 1,781,576 singletons born in Denmark from 1977 to 2008. Children were followed for up to 30 years from the day of birth until the onset of the outcomes under study, death, emigration, or December 31, 2009, whichever came first. We used Cox proportional hazards model to estimate hazard ratios (HR) with 95% confidence intervals (95% CI) for the outcomes under study while adjusting for potential confounders. An increased risk of malignant neoplasm was found in children prenatally exposed to maternal type 2 diabetes (HR = 2.2, 95%CI: 1.5-3.2). An increased risk of diseases of the circulatory system was found in children exposed to maternal type 1 diabetes (HR = 2.2, 95%CI: 1.6-3.0), type 2 diabetes (HR = 1.4, 95%CI: 1.1-1.7), and gestational diabetes (HR = 1.3, 95%CI: 1.1-1.6), but results were attenuated after excluding children with congenital malformations. An increased risk of diseases of the circulatory system was also found in children exposed to paternal type 2 diabetes (HR = 1.5, 95%CI: 1.1-2.2) and the elevated risk remained after excluding children with congenital malformations. CONCLUSIONS: This study suggests that susceptibility to malignant neoplasm is modified partly by fetal programming. Diseases of the circulatory system may be modified by genetic factors, other time-stable family factors, or fetal programming
    corecore