89 research outputs found

    Carotid rete mirabile and pseudoxanthoma elasticum: an accidental association?

    Get PDF
    We report the case of a young female patient with a transient amaurosis due to a carotid rete mirabile (CRM), a rare congenital carotid malformation, and pseudoxanthoma elasticum (PXE), an inherited autosomal recessive systemic metabolic disorder characterised by fragmentation and mineralisation of elastic fibres in connective tissues (skin, eyes) and the vascular system. CRM is a rare form of intracranial carotid malformation whose association with PXE (6 cases at present) would appear not to be accidental. This observation suggests a new link between congenital arterial remodelling and the PXE

    Cross-sectional associations between air pollution and chronic bronchitis: an ESCAPE meta-analysis across five cohorts

    Get PDF
    BACKGROUND: This study aimed to assess associations of outdoor air pollution on prevalence of chronic bronchitis symptoms in adults in five cohort studies (Asthma-E3N, ECRHS, NSHD, SALIA, SAPALDIA) participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. METHODS: Annual average particulate matter (PM10, PM2.5, PMabsorbance, PMcoarse), NO2, nitrogen oxides (NOx) and road traffic measures modelled from ESCAPE measurement campaigns 2008-2011 were assigned to home address at most recent assessments (1998-2011). Symptoms examined were chronic bronchitis (cough and phlegm for ≥3 months of the year for ≥2 years), chronic cough (with/without phlegm) and chronic phlegm (with/without cough). Cohort-specific cross-sectional multivariable logistic regression analyses were conducted using common confounder sets (age, sex, smoking, interview season, education), followed by meta-analysis. RESULTS: 15 279 and 10 537 participants respectively were included in the main NO2 and PM analyses at assessments in 1998-2011. Overall, there were no statistically significant associations with any air pollutant or traffic exposure. Sensitivity analyses including in asthmatics only, females only or using back-extrapolated NO2 and PM10 for assessments in 1985-2002 (ECRHS, NSHD, SALIA, SAPALDIA) did not alter conclusions. In never-smokers, all associations were positive, but reached statistical significance only for chronic phlegm with PMcoarse OR 1.31 (1.05 to 1.64) per 5 µg/m(3) increase and PM10 with similar effect size. Sensitivity analyses of older cohorts showed increased risk of chronic cough with PM2.5abs (black carbon) exposures. CONCLUSIONS: Results do not show consistent associations between chronic bronchitis symptoms and current traffic-related air pollution in adult European populations

    Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.

    Get PDF
    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO\u2082, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV\u2081) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 \u3bcg\ub7m(-3) increase in NO\u2082 exposure was associated with lower levels of FEV\u2081 (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 \u3bcg\ub7m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV\u2081 (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe

    Correction to: Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium (<em>Journal of NeuroEngineering and Rehabilitation</em>, (2023), 20, 1, (78), 10.1186/s12984-023-01198-5)

    Get PDF
    \ua9 The Author(s) 2024.Following publication of the original article [1], the author noticed the errors in Table 1, and in Discussion section. In Table 1 under Metric (Gait sequence detection) column, the algorithms GSDB was updated with wrong description, input, output, language and citation and GSDc with wrong description has been corrected as shown below: (Table presented.) Description of algorithms for each metric: gait sequence detection (GSD), initial contact event detection (ICD), cadence estimation (CAD) and stride length estimation (SL) Metric Name Description Input Output Language References GSDA Based on a frequency-based approach, this algorithm is implemented on the vertical and anterior–posterior acceleration signals. First, these are band pass filtered to keep frequencies between 0.5 and 3 Hz. Next, a convolution of a 2 Hz sinewave (representing a template for a gait cycle) is performed, from which local maxima will be detected to define the regions of gait acc_v: vertical acceleration acc_ap: anterior–posterior acceleration WinS = 3 s; window size for convolution OL = 1.5 s; overlap of windows Activity_thresh = 0.01; Motion threshold Fs: sampling frequency Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 7 N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 7 N vector Matlab\uae Iluz, Gazit [40] GSDB This algorithm, based on a time domain-approach, detects the gait periods based on identified steps. First, the norm of triaxial acceleration signal is low-pass filtered (FIR, fc = 3.2 Hz), then a peak detection procedure using a threshold of 0.1 [g] is applied to identify steps. Consecutive steps, detected using an adaptive step duration threshold are associated to gait sequences acc_norm: norm of the 3D-accelerometer signal Fs: sampling frequency th: peak detection threshold: 0.1 (g) Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 7 N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 7 N vector Matlab\uae Paraschiv-Ionescu, Newman [41] GSDc This algorithm utilizes the same approach as GSDBthe only difference being a different threshold for peak detection of 0.15 [g] acc_norm: norm of the 3D-accelerometer signal Fs: sampling frequency th: peak detection threshold: 0.15 (g) Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 7 N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 7 N vector Matlab\uae Paraschiv-Ionescu, Newman [41] In Discussion section, the paragraph should read as "Based on our findings collectively, we recommend using GSDB on cohorts with slower gait speeds and substantial gait impairments (e.g., proximal femoral fracture). This may be because this algorithm is based on the acceleration norm (overall accelerometry signal rather than a specific axis/direction (e.g., vertical), hence it is more robust to sensor misalignments that are common in unsupervised real-life settings. Moreover, the use of adaptive threshold, that are derived from the features of a subject’s data and applied to step duration for detection of steps belonging to gait sequences, allows increased robustness of the algorithm to irregular and unstable gait patterns" instead of “Based on our findings collectively, we recommend using GSDB on cohorts with slower gait speeds and substantial gait impairments (e.g., proximal femoral fracture). This may be because this algorithm is based on the acceleration norm (overall accelerometry signal rather than a specific axis/direction (e.g., vertical), hence it is more robust to sensor misalignments that are common in unsupervised real-life settings [41]. Moreover, the use of adaptive thresholds, that are derived from the features of a subject’s data and applied to the amplitude of acceleration norm and to step duration for detection of steps belonging to gait sequences, allows increased robustness of the algorithm to irregular and unstable gait patterns”

    Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases

    Get PDF
    Introduction: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of −0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, −0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases

    Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium

    Get PDF
    Background Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. Methods Twenty healthy older adults, 20 people with Parkinson’s disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. Results We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms’ performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. Conclusions Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms’ performances

    A multi-sensor wearable system for the assessment of diseased gait in real-world conditions

    Get PDF
    Introduction: Accurately assessing people’s gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≀0.61 steps/min, stride length ≀0.02 m, walking speed ≀0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking speed 0.03–0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions

    Technical validation of real-world monitoring of gait : a multicentric observational study

    Get PDF
    Introduction: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users’ perspective on the device. Methods and analysis: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs. After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson’s disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users’ perspective on the deployed technology and relevance of the mobility assessment. Ethics and dissemination: The study has been granted ethics approval by the centre’s committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of TĂŒbingen and of the University of Kiel). Data and algorithms will be made publicly available. Trial registration number ISRCTN (12246987)
    • 

    corecore