322 research outputs found

    Integrated geophysical and geological investigations applied to sedimentary rock mass characterization

    Get PDF
    The Salento Peninsula (south-eastern Italy) is characterized by sedimentary rocks. The carbonatic nature of the rocks means they are affected by karst phenomena, forming such features as sinkholes, collapsed dolines and caverns, as a result of chemical leaching of carbonates by percolating water. The instability of these phenomena often produces land subsidence problems. The importance of these events is increasing due to growing urbanization, numerous quarries affecting both the subsoil and the surface, and an important coastline characterized by cliffs. This paper focuses on geological and geophysical methods for the characterization of soft sedimentary rock, and presents the results of a study carried out in an urban area of Salento. Taking the Q system derived by Barton (2002) as the starting point for the rock mass classification, a new approach and a modification of the Barton method are proposed. The new equation proposed for the classification of sedimentary rock mass (Qsrm) takes account of the permeability of the rock masses, the geometry of the exposed rock face and their types (for example, quarry face, coastal cliff or cavity), the nature of the lithotypes that constitute the exposed sequence, and their structure and texture. This study revises the correlation between Vp and Q derived by Barton (2002), deriving a new empirical equation correlating P-wave velocities and Qsrm values in soft sedimentary rock. We also present a case history in which stratigraphical surveys, Electrical Resistivity Tomography (ERT), and seismic surveys were applied to in situ investigations of subsidence phenomena in an urban area to estimate rock mass quality. Our work shows that in the analysis of ground safety it is important to establish the rock mass quality of the subsurface structures; geophysical exploration can thus play a key role in the assessment of subsidence risk

    Recursive internetwork architecture, investigating RINA as an alternative to TCP/IP (IRATI)

    Get PDF
    Driven by the requirements of the emerging applications and networks, the Internet has become an architectural patchwork of growing complexity which strains to cope with the changes. Moore’s law prevented us from recognising that the problem does not hide in the high demands of today’s applications but lies in the flaws of the Internet’s original design. The Internet needs to move beyond TCP/IP to prosper in the long term, TCP/IP has outlived its usefulness. The Recursive InterNetwork Architecture (RINA) is a new Internetwork architecture whose fundamental principle is that networking is only interprocess communication (IPC). RINA reconstructs the overall structure of the Internet, forming a model that comprises a single repeating layer, the DIF (Distributed IPC Facility), which is the minimal set of components required to allow distributed IPC between application processes. RINA supports inherently and without the need of extra mechanisms mobility, multi-homing and Quality of Service, provides a secure and configurable environment, motivates for a more competitive marketplace and allows for a seamless adoption. RINA is the best choice for the next generation networks due to its sound theory, simplicity and the features it enables. IRATI’s goal is to achieve further exploration of this new architecture. IRATI will advance the state of the art of RINA towards an architecture reference model and specifcations that are closer to enable implementations deployable in production scenarios. The design and implemention of a RINA prototype on top of Ethernet will permit the experimentation and evaluation of RINA in comparison to TCP/IP. IRATI will use the OFELIA testbed to carry on its experimental activities. Both projects will benefit from the collaboration. IRATI will gain access to a large-scale testbed with a controlled network while OFELIA will get a unique use-case to validate the facility: experimentation of a non-IP based Internet

    Search for carbonaceous chondrites evidence on Vesta through the detection of carbonates

    Get PDF
    NASA’s Dawn mission was launched in September 2007 and orbited asteroids Vesta (2011 2012) and Ceres (2015–2018). Vesta shows surface dark units that have been suggested to be linked to exogenous materials and are therefore useful to understand the initial stages of the Solar System. This work takes advantage of the newly calibrated data of the VIR spectrometer, which are characterized by a better signal to noise (S/N) ratio, giving us the opportunity to search for spectral features that were never seen before due to noise. Considering that hydroxyl has been shown to be present in every dark unit on Vesta and also in carbonaceous chondrites, the goals of this work are the search for and characterization of carbonates that are present in carbonaceous chondrites, i.e., the supposed darkening agents of Vesta. The estimate of the abundances of carbonates is fundamental to identify which carbonaceous chondrite fell on Vesta; this can be crucial for the definition of an evolutionary history of Vesta and the Solar System. The study of a possible feature at 3.9 μm related to the presence of carbonates was analyzed and found to be noise-induced. Although spectral features related to carbonates were not observed, the 3.4 μm absorption band was analyzed anyway in order to fix an upper limit to the abundance of carbonates in carbonaceous chondrites on Vesta. This value is consistent with petrochemical analyses, i.e., no more than 0.2% of carbonates in carbonaceous chondrites

    Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission

    Get PDF
    We study the spectrophotometric properties of dwarf planet Ceres in the VIS-IR spectral range by means of hyper-spectral images acquired by the VIR imaging spectrometer on board the NASA Dawn mission. Disk-resolved observations with a phase angle within the 7<α<1327^{\circ}<\alpha<132^{\circ} interval were used to characterize Ceres' phase curve in the 0.465-4.05 μ\mum spectral range. Hapke's model was applied to perform the photometric correction of the dataset, allowing us to produce albedo and color maps of the surface. The VV-band magnitude phase function of Ceres was fitted with both the classical linear model and H-G formalism. The single-scattering albedo and the asymmetry parameter at 0.55μ\mum are w=0.14±0.02w=0.14\pm0.02 and ξ=0.11±0.08\xi=-0.11\pm0.08, respectively (two-lobe Henyey-Greenstein phase function); the modeled geometric albedo is 0.094±0.0070.094\pm0.007; the roughness parameter is θˉ=29±6\bar{\theta}=29^{\circ}\pm6^{\circ}. Albedo maps indicate small variability on a global scale with an average reflectance of 0.034±0.0030.034 \pm 0.003. Isolated areas such as the Occator bright spots, Haulani, and Oxo show an albedo much higher than average. We measure a significant spectral phase reddening, and the average spectral slope of Ceres' surface after photometric correction is 1.1%kA˚11.1\%k\AA^{-1} and 0.85%kA˚10.85\%k\AA^{-1} at VIS and IR wavelengths, respectively. Broadband color indices are VR=0.38±0.01V-R=0.38\pm0.01 and RI=0.33±0.02R-I=0.33\pm0.02. H-G modeling of the VV-band magnitude phase curve for α<30\alpha<30^{\circ} gives H=3.14±0.04H=3.14\pm0.04 and G=0.10±0.04G=0.10\pm0.04, while the classical linear model provides V(1,1,0)=3.48±0.03V(1,1,0^{\circ})=3.48\pm0.03 and β=0.036±0.002\beta=0.036\pm0.002. The comparison with spectrophotometric properties of other minor bodies indicates that Ceres has a less back-scattering phase function and a slightly higher albedo than comets and C-type objects. However, the latter represents the closest match in the usual asteroid taxonomy.Comment: 14 pages, 20 figures, published online on Astronomy and Astrophysics on 13 February 2017. Revised to reflect minor changes in text and figures made in proofs, updated value of V-R and R-

    Occupational Exposure to Halogenated Anaesthetic Gases in Hospitals: A Systematic Review of Methods and Techniques to Assess Air Concentration Levels

    Get PDF
    Objective During the induction of gaseous anaesthesia, waste anaesthetic gases (WAGs) can be released into workplace air. Occupational exposure to high levels of halogenated WAGs may lead to adverse health effects; hence, it is important to measure WAGs concentration levels to perform risk assessment and for health protection purposes. Methods A systematic review of the scientific literature was conducted on two different scientific databases (Scopus and PubMed). A total of 101 studies, focused on sevoflurane, desflurane and isoflurane exposures in hospitals, were included in this review. Key information was extracted to provide (1) a description of the study designs (e.g., monitoring methods, investigated occupational settings, anaesthetic gases in use); (2) an evaluation of time trends in the measured concentrations of considered WAGs; (3) a critical evaluation of the sampling strategies, monitoring methods and instruments used. Results Environmental monitoring was prevalent (68%) and mainly used for occupational exposure assessment during adult anaesthesia (84% of cases). Real-time techniques such as photoacoustic spectroscopy and infrared spectrophotometry were used in 58% of the studies, while off-line approaches such as active or passive sampling followed by GC-MS analysis were used less frequently (39%). Conclusions The combination of different instrumental techniques allowing the collection of data with different time resolutions was quite scarce (3%) despite the fact that this would give the opportunity to obtain reliable data for testing the compliance with 8 h occupational exposure limit values and at the same time to evaluate short-term exposures

    The Mineralogy of Ceres’ Nawish Quadrangle

    Get PDF
    Quadrangle Ac-H-08 Nawish is located in the equatorial region of Ceres (Lat 22°S-22°N, Lon 144°E- 216°E), and it has variable mineralogy and geology. Here, we report on the mineralogy using spectra from the Visible and InfraRed (VIR) mapping spectrometer onboard the NASA Dawn mission. This quadrangle has two generally different regions: the cratered highlands of the central and eastern sector, and the eastern lowlands. We find this dichotomy is also associated with differences in the NH_4-phyllosilicates distribution. The highlands, in the eastern part of the quadrangle, appear depleted in NH_4-phyllosilicates, conversely to the lowlands, in the north-western side. The Mg-phyllosilicates distribution is quite homogeneous across Nawish quadrangle, except for few areas. The 2.7 µm band depth is lower in the south-eastern part, e.g. in the Azacca ejecta and Consus crater ejecta, and the band depth is greatest for the Nawish crater ejecta, and indicates the highest content of Mg-phyllosilicates of the entire quadrangle. Our analysis finds an interesting relationship between geology, mineralogy, topography, and the age in this quadrangle. The cratered terrains in the highlands, poor in NH_4 phyllosilicates, are older (̴2 Ga). Conversely, the smooth terrain, such as with Vindimia Planitia, is richer in ammonia-bearing phyllosilicates and is younger (̴1 Ga). At the local scale, Ac-H-8 Nawish, displays several interesting mineralogical features, such as at Nawish crater, Consus crater, Dantu and Azzacca ejecta, which exhibit localized Na-carbonates deposits. This material is superimposed on the cratered terrains and smooth terrains and shows the typical depletion of phyllosilicates, already observed on Ceres in the presence of Na-carbonates
    corecore