119 research outputs found

    Kinetic and functional properties of human mitochondrial phosphoenolpyruvate carboxykinase

    Get PDF
    The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeogenesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for Mn2+ ions for activity; Mg2+ ions reduce the Km for Mn2+ by about 60 fold. Its specificity constant is 100 fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation is the favored reaction in vivo. The enzyme possesses weak pyruvate kinase-like activity (kcat=2.7 s-1). When overexpressed in HEK293T cells it enhances strongly glucose and lipid production showing that it can play, as the cytosolic isoenzyme, an active role in glyceroneogenesis and gluconeogenesis

    Estudios In Vitro de Cementos de α-Fosfato Tricálcico Modificados con β-Silicato Dicálcico

    Get PDF
    The combination of in situ self-setting and biocompatibility, makes calcium phosphate cements highly promising materials for a wide range of clinical applications. However, its low strength limits their use only to lowstress applications. β-Dicalcium silicate (β-C2S) is a Portland cement component, able to react with water to form a hydrated phase that enhance mechanical strength of material. Different authors reported the bioactive capacity of this compound. In this investigation, α-TCP cements modified with β-C2S were prepared. The α-tricalcium phosphate (αTCP) powder was prepared through acid-base method, and β-C2S was synthesized by sol-gel method. Materials were characterized both chemically and physically. Biodegradability was studied by soaking the materials in simulated body fluid for various time periods. The results showed that a cement with 20 % of β-C2S exhibited greater compressive strength and pH values (19,8 MPa and 8,09 respectively).La capacidad que presentan los cementos de fosfato de calcio de fraguar en condiciones fisiológicas, así como su excelente biocompatibilidad, hacen estos materiales factibles para diferentes aplicaciones clínicas. Sin embargo sus bajas propiedades mecánicas limitan dichas aplicaciones a zonas de menores esfuerzos físicos. El βsilicato dicálcico (β-C2S) es un componente del cemento Portland, que reacciona con agua formando una fase hidratada de elevada resistencia mecánica. Diferentes autores han demostrado la capacidad bioactiva de este compuesto. En el presente trabajo fueron preparados cementos de α-fosfato tricálcico (α-TCP) modificados con β-C2S.El polvo de α-TCP fue obtenido por reacción ácido-base y el β-C2S vía sol-gel. Los materiales fueron caracterizados físico-químicamente, además de estudiar la biodegradación de los mismos a través de su inmersión en solución fisiológica simulada. Los mayores valores de resistencia a la compresión y pH correspondieron al cemento con 20% de β-C2S (19,8 MPa and 8,09 respectivamente

    Cell spotting: Educational and motivational outcomes of cell biology citizen science project in the classroom

    Get PDF
    Success stories of citizen science projects widely demonstrate the value of this open science paradigm and encourage organizations to shift towards new ways of doing research. While benefits for researchers are clear, outcomes for individuals participating in these projects are not easy to assess. The wide spectrum of volunteers collaborating in citizen science projects greatly contributes to the difficulty in the evaluation of the projects'' outcomes. Given the strong links between many citizen science projects and education, in this work we present an experience with hundreds of students (aged 15-18) of two different countries who participate in a project on cell biology research-Cell Spotting-as part of their regular classroom activities. Apart from introducing the project and resources involved, we aim to provide an overview of the benefits of integrating citizen science in the context of formal science education and of what teachers and students may obtain from it. In this case, besides helping students to consolidate and apply theoretical concepts included in the school curriculum, some other types of informal learning have also been observed such as the feeling of playing a key role, which contributed to an increase of students'' motivation

    Impact of fuel quantity on luminescence properties of Sr3Al2O6:Eu by combustion synthesis

    Get PDF
    Abstract The photoluminescent behavior of Eu-doped Sr3Al2O6 obtained by highly efficient solution combustion synthesis is reported. In order to understand the influence of the fuel on the synthesis, the stoichiometric quantity and an excess of fuel were evaluated. By adjusting the amount of fuel, different luminescence responses were obtained, allowing europium cations incorporation into the Sr3Al2O6 lattice to serve as effective luminescence activators in such a short time during the rapid combustion synthesis process. The higher amount of fuel in the presence of the oxidizing agent produced Sr3Al2O6:Eu particles with higher phosphorescence brightness, owing to the increase of the reduction process from Eu3+ to Eu2+. The synthesized phosphor showed an intense band emission centered at 515 nm and could be excited over a broad spectral range in the UV-visible region. Particles having nanostructured flake-type morphology were obtained, which was considered a micro-nanofunctional candidate for practical applications

    Koilocytes indicate a role for human papilloma virus in breast cancer

    Get PDF
    Background: High-risk human papilloma viruses (HPVs) are candidates as causal viruses in breast cancer. The scientific challenge is to determine whether HPVs are causal and not merely passengers or parasites. Studies of HPV-related koilocytes in breast cancer offer an opportunity to address this crucial issue. Koilocytes are epithelial cells characterised by perinuclear haloes surrounding condensed nuclei and are commonly present in cervical intraepithelial neoplasia. Koilocytosis is accepted as pathognomonic (characteristic of a particular disease) of HPV infection. The aim of this investigation is to determine whether putative koilocytes in normal and malignant breast tissues are because of HPV infection. Methods: Archival formalin-fixed normal and malignant breast specimens were investigated by histology, in situ PCR with confirmation of the findings by standard PCR and sequencing of the products, plus immunohistochemistry to identify HPV E6 oncoproteins. Results: human papilloma virus-associated koilocytes were present in normal breast skin and lobules and in the breast skin and cancer tissue of patients with ductal carcinoma in situ (DCIS) and invasive ductal carcinomas (IDCs). Interpretation: As koilocytes are known to be the precursors of some HPV-associated cervical cancer, it follows that HPVs may be causally associated with breast cancer.6 page(s

    Number and mode of inheritance of QTL influencing backfat thickness on SSC2p in Sino-European pig pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the pig, multiple QTL associated with growth and fatness traits have been mapped to chromosome 2 (SSC2) and among these, at least one shows paternal expression due to the IGF2-intron3-G3072A substitution. Previously published results on the position and imprinting status of this QTL disagree between analyses from French and Dutch F2 crossbred pig populations obtained with the same breeds (Meishan crossed with Large White or Landrace).</p> <p>Methods</p> <p>To study the role of paternal and maternal alleles at the IGF2 locus and to test the hypothesis of a second QTL affecting backfat thickness on the short arm of SSC2 (SSC2p), a QTL mapping analysis was carried out on a combined pedigree including both the French and Dutch F2 populations, on the progeny of F1 males that were heterozygous (A/G) and homozygous (G/G) at the IGF2 locus. Simulations were performed to clarify the relations between the two QTL and to understand to what extent they can explain the discrepancies previously reported.</p> <p>Results</p> <p>The QTL analyses showed the segregation of at least two QTL on chromosome 2 in both pedigrees, i.e. the IGF2 locus and a second QTL segregating at least in the G/G F1 males and located between positions 30 and 51 cM. Statistical analyses highlighted that the maternally inherited allele at the IGF2 locus had a significant effect but simulation studies showed that this is probably a spurious effect due to the segregation of the second QTL.</p> <p>Conclusions</p> <p>Our results show that two QTL on SSC2p affect backfat thickness. Differences in the pedigree structures and in the number of heterozygous females at the IGF2 locus result in different imprinting statuses in the two pedigrees studied. The spurious effect observed when a maternally allele is present at the IGF2 locus, is in fact due to the presence of a second closely located QTL. This work confirms that pig chromosome 2 is a major region associated with fattening traits.</p

    C-Terminal Extension of the Yeast Mitochondrial DNA Polymerase Determines the Balance between Synthesis and Degradation

    Get PDF
    Saccharomyces cerevisiae mitochondrial DNA polymerase (Mip1) contains a C-terminal extension (CTE) of 279 amino acid residues. The CTE is required for mitochondrial DNA maintenance in yeast but is absent in higher eukaryotes. Here we use recombinant Mip1 C-terminal deletion mutants to investigate functional importance of the CTE. We show that partial removal of the CTE in Mip1Δ216 results in strong preference for exonucleolytic degradation rather than DNA polymerization. This disbalance in exonuclease and polymerase activities is prominent at suboptimal dNTP concentrations and in the absence of correctly pairing nucleotide. Mip1Δ216 also displays reduced ability to synthesize DNA through double-stranded regions. Full removal of the CTE in Mip1Δ279 results in complete loss of Mip1 polymerase activity, however the mutant retains its exonuclease activity. These results allow us to propose that CTE functions as a part of Mip1 polymerase domain that stabilizes the substrate primer end at the polymerase active site, and is therefore required for efficient mitochondrial DNA replication in vivo

    Comparison of Pharmacological Modulation of APP Metabolism in Primary Chicken Telencephalic Neurons and in a Human Neuroglioma Cell Line

    Get PDF
    Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases and the formation of Aβ peptides are pivotal for Alzheimer's disease. Therefore, a large number of drugs has been developed targeting APP metabolism. However, many pharmacological compounds have been identified in vitro in immortalized APP overexpressing cell lines rather than in primary neurons. Here, we compared the effect of already characterized secretase inhibitors and modulators on Aβ formation in primary chicken telencephalic neurons and in a human neuroglioma cell line (H4) ectopically expressing human APP with the Swedish double mutation. Primary chicken neurons replicated the effects of a β-secretase inhibitor (β-secretase inhibitor IV), two γ-secretase inhibitors (DAPM, DAPT), two non-steroidal-anti-inflammatory drugs (sulindac sulfide, CW), and of the calpain inhibitor calpeptin. With the exception of the two γ-secretase inhibitors, all tested compounds were more efficacious in primary chicken telencephalic neurons than in the immortalized H4 cell line. Moreover, H4 cells failed to reproduce the effect of calpeptin. Hence, primary chicken telencephalic neurons represent a suitable cell culture model for testing drugs interfering with APP processing and are overall more sensitive to pharmacological interference than immortalized H4 cells ectopically expressing mutant human APP
    corecore