178 research outputs found

    High Throughput Neurological Phenotyping with MetaMap

    Get PDF
    The phenotyping of neurological patients involves the conversion of signs and symptoms into machine readable codes selected from an appropriate ontology. The phenotyping of neurological patients is manual and laborious. MetaMap is used for high throughput mapping of the medical literature to concepts in the Unified Medical Language System Metathesaurus (UMLS). MetaMap was evaluated as a tool for the high throughput phenotyping of neurological patients. Based on 15 patient histories from electronic health records, 30 patient histories from neurology textbooks, and 20 clinical summaries from the Online Mendelian Inheritance in Man repository, MetaMap showed a recall of 61-89%, a precision of 84-93%, and an accuracy of 56-84% for the identification of phenotype concepts. The most common cause of false negatives (failure to recognize a phenotype concept) was an inability of MetaMap to find concepts that were represented as a description or a definition of the concept. The most common cause of false positives (incorrect identification of a concept in the text) was a failure to recognize that a concept was negated. MetaMap shows potential for high throughput phenotyping of neurological patients if the problems of false negatives and false positives can be solved

    Subtypes of Relapsing-Remitting Multiple Sclerosis Identified by Network Analysis

    Get PDF
    We used network analysis to identify subtypes of relapsing-remitting multiple sclerosis subjects based on their cumulative signs and symptoms. The electronic medical records of 113 subjects with relapsing-remitting multiple sclerosis were reviewed, signs and symptoms were mapped to classes in a neuro-ontology, and classes were collapsed into sixteen superclasses by subsumption. After normalization and vectorization of the data, bipartite (subject-feature) and unipartite (subject-subject) network graphs were created using NetworkX and visualized in Gephi. Degree and weighted degree were calculated for each node. Graphs were partitioned into communities using the modularity score. Feature maps visualized differences in features by community. Network analysis of the unipartite graph yielded a higher modularity score (0.49) than the bipartite graph (0.25). The bipartite network was partitioned into five communities which were named fatigue, behavioral, hypertonia/weakness, abnormal gait/sphincter, and sensory, based on feature characteristics. The unipartite network was partitioned into five communities which were named fatigue, pain, cognitive, sensory, and gait/weakness/hypertonia based on features. Although we did not identify pure subtypes (e.g., pure motor, pure sensory, etc.) in this cohort of multiple sclerosis subjects, we demonstrated that network analysis could partition these subjects into different subtype communities. Larger datasets and additional partitioning algorithms are needed to confirm these findings and elucidate their significance. This study contributes to the literature investigating subtypes of multiple sclerosis by combining feature reduction by subsumption with network analysis

    Knowledge of fertility and perception of fertility treatment among adults with sickle cell disease (KNOW FERTILITY)

    Get PDF
    IntroductionThis study assessed fertility knowledge in adults with sickle cell disease using the Cardiff Fertility Knowledge Scale and Fertility Treatment Perception Survey and compared knowledge scores in respondents with sickle cell disease to previously reported unaffected cohorts.MethodsThis cross-sectional study surveyed adults over age 18 with sickle cell disease at an adult sickle cell disease center using a 35-question survey addressing infertility risk factor knowledge and perceptions of fertility treatment. Analyses included summary statistics for continuous and categorical variables, univariate linear regression, and Mann-Whitney U tests for group comparisons of Fertility Knowledge Scale scores. Fertility Treatment Perception Survey scores were measured by medians of the two positive statements and four negative statements to generate separate positive and negative treatment belief scores. Statistical significance was set at p < 0.05 for all analyses.ResultsNinety-two respondents (71 female, 21 male) with median age of 32 years (IQR: 25.0, 42.5) completed the survey between October 2020-May 2021. Sixty-five percent of respondents reported taking sickle cell disease treatment and 18% reported refusing at least one sickle cell disease treatment due to fertility concerns. The mean Fertility Knowledge Score was 49% (SD: 5.2), lower than reported in an international cohort (57% vs. 49%, p = 0.001), and higher than in a cohort of reproductive-aged Black women in the USA (49% vs. 38%, p = 0.001). Less than 50% of respondents correctly identified common infertility risk factors including sexually transmitted infections, advanced age, and obesity. Mean positive fertility perception score was 3 (IQR 3, 4), and negative fertility perception score was 3.5 (IQR 3, 4). Factors associated with agreement with negative fertility perception statements included: trying to conceive, refusing sickle cell disease treatment, and undergoing fertility treatment.DiscussionOpportunities exist to improve knowledge of infertility risk factors among adults with sickle cell disease. This study raises the possibility that nearly one in five adults with sickle cell disease refuse SCD treatment or cure due to infertility concerns. Education about common infertility risks factors needs to be addressed alongside disease- and treatment- associated fertility risks

    The visualization of Orphadata neurology phenotypes

    Get PDF
    Disease phenotypes are characterized by signs (what a physician observes during the examination of a patient) and symptoms (the complaints of a patient to a physician). Large repositories of disease phenotypes are accessible through the Online Mendelian Inheritance of Man, Human Phenotype Ontology, and Orphadata initiatives. Many of the diseases in these datasets are neurologic. For each repository, the phenotype of neurologic disease is represented as a list of concepts of variable length where the concepts are selected from a restricted ontology. Visualizations of these concept lists are not provided. We address this limitation by using subsumption to reduce the number of descriptive features from 2,946 classes into thirty superclasses. Phenotype feature lists of variable lengths were converted into fixed-length vectors. Phenotype vectors were aggregated into matrices and visualized as heat maps that allowed side-by-side disease comparisons. Individual diseases (representing a row in the matrix) were visualized as word clouds. We illustrate the utility of this approach by visualizing the neuro-phenotypes of 32 dystonic diseases from Orphadata. Subsumption can collapse phenotype features into superclasses, phenotype lists can be vectorized, and phenotypes vectors can be visualized as heat maps and word clouds

    The Cultural Project : Formal Chronological Modelling of the Early and Middle Neolithic Sequence in Lower Alsace

    Get PDF
    Starting from questions about the nature of cultural diversity, this paper examines the pace and tempo of change and the relative importance of continuity and discontinuity. To unravel the cultural project of the past, we apply chronological modelling of radiocarbon dates within a Bayesian statistical framework, to interrogate the Neolithic cultural sequence in Lower Alsace, in the upper Rhine valley, in broad terms from the later sixth to the end of the fifth millennium cal BC. Detailed formal estimates are provided for the long succession of cultural groups, from the early Neolithic Linear Pottery culture (LBK) to the Bischheim Occidental du Rhin Supérieur (BORS) groups at the end of the Middle Neolithic, using seriation and typology of pottery as the starting point in modelling. The rate of ceramic change, as well as frequent shifts in the nature, location and density of settlements, are documented in detail, down to lifetime and generational timescales. This reveals a Neolithic world in Lower Alsace busy with comings and goings, tinkerings and adjustments, and relocations and realignments. A significant hiatus is identified between the end of the LBK and the start of the Hinkelstein group, in the early part of the fifth millennium cal BC. On the basis of modelling of existing dates for other parts of the Rhineland, this appears to be a wider phenomenon, and possible explanations are discussed; full reoccupation of the landscape is only seen in the Grossgartach phase. Radical shifts are also proposed at the end of the Middle Neolithic

    Effects of syntactic context on eye movements during reading

    Get PDF
    Previous research has demonstrated that properties of a currently fixated word and of adjacent words influence eye movement control in reading. In contrast to such local effects, little is known about the global effects on eye movement control, for example global adjustments caused by processing difficulty of previous sentences. In the present study, participants read text passages in which voice (active vs. passive) and sentence structure (embedded vs. non-embedded) were manipulated. These passages were followed by identical target sentences. The results revealed effects of previous sentence structure on gaze durations in the target sentence, implying that syntactic properties of previously read sentences may lead to a global adjustment of eye movement control

    New Insights in the Contribution of Voltage-Gated Nav Channels to Rat Aorta Contraction

    Get PDF
    BACKGROUND: Despite increasing evidence for the presence of voltage-gated Na(+) channels (Na(v)) isoforms and measurements of Na(v) channel currents with the patch-clamp technique in arterial myocytes, no information is available to date as to whether or not Na(v) channels play a functional role in arteries. The aim of the present work was to look for a physiological role of Na(v) channels in the control of rat aortic contraction. METHODOLOGY/PRINCIPAL FINDINGS: Na(v) channels were detected in the aortic media by Western blot analysis and double immunofluorescence labeling for Na(v) channels and smooth muscle alpha-actin using specific antibodies. In parallel, using real time RT-PCR, we identified three Na(v) transcripts: Na(v)1.2, Na(v)1.3, and Na(v)1.5. Only the Na(v)1.2 isoform was found in the intact media and in freshly isolated myocytes excluding contamination by other cell types. Using the specific Na(v) channel agonist veratridine and antagonist tetrodotoxin (TTX), we unmasked a contribution of these channels in the response to the depolarizing agent KCl on rat aortic isometric tension recorded from endothelium-denuded aortic rings. Experimental conditions excluded a contribution of Na(v) channels from the perivascular sympathetic nerve terminals. Addition of low concentrations of KCl (2-10 mM), which induced moderate membrane depolarization (e.g., from -55.9+/-1.4 mV to -45.9+/-1.2 mV at 10 mmol/L as measured with microelectrodes), triggered a contraction potentiated by veratridine (100 microM) and blocked by TTX (1 microM). KB-R7943, an inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger, mimicked the effect of TTX and had no additive effect in presence of TTX. CONCLUSIONS/SIGNIFICANCE: These results define a new role for Na(v) channels in arterial physiology, and suggest that the TTX-sensitive Na(v)1.2 isoform, together with the Na(+)/Ca(2+) exchanger, contributes to the contractile response of aortic myocytes at physiological range of membrane depolarization
    • …
    corecore