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Disease phenotypes are characterized by signs (what a physician observes during the
examination of a patient) and symptoms (the complaints of a patient to a physician).
Large repositories of disease phenotypes are accessible through the Online
Mendelian Inheritance of Man, Human Phenotype Ontology, and Orphadata
initiatives. Many of the diseases in these datasets are neurologic. For each
repository, the phenotype of neurologic disease is represented as a list of concepts
of variable length where the concepts are selected from a restricted ontology.
Visualizations of these concept lists are not provided. We address this limitation by
using subsumption to reduce the number of descriptive features from 2,946 classes
into thirty superclasses. Phenotype feature lists of variable lengths were converted
into fixed-length vectors. Phenotype vectors were aggregated into matrices and
visualized as heat maps that allowed side-by-side disease comparisons. Individual
diseases (representing a row in the matrix) were visualized as word clouds. We
illustrate the utility of this approach by visualizing the neuro-phenotypes of 32
dystonic diseases from Orphadata. Subsumption can collapse phenotype features
into superclasses, phenotype lists can be vectorized, and phenotypes vectors can
be visualized as heat maps and word clouds.
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Introduction

The signs and symptoms of a disease characterize its phenotype. In addition to signs (what a

physician observes in a patient) and symptoms (the complaints of a patient), a clinical phenotype

can include the age at the onset of a disease, its mode of onset, its rate of progression, its mode of

inheritance, and its response to treatment. Some researchers include biochemical, radiological,

electrophysiological, and biosensor findings as part of the disease phenotype (1–5). Large

phenotype repositories are available on the internet. The On-Line Mendelian Inheritance in

Man (OMIM) has over 9,500 disease profiles (6) and Orphadata has phenotype profiles of

4,245 rare diseases (7). The Human Phenotype Ontology (HPO) draws phenotype profiles

from Orphadata and OMIM so that some genetic diseases have alternative profiles from each

registry (8,9). All three repositories have sophisticated search engines that retrieve phenotype

features by disease or gene (1). Phenotypic features are recorded as concepts (terms) from

restricted vocabularies such as the Human Phenotype Ontology (20,246 terms) (10), or the

Online Mendelian Inheritance of Man ontology (99,165 terms) (11).
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Neuro-phenotypes

The June 2022 release of Orphadata lists 7,261 rare diseases, with

1,740 classified as rare neurological diseases (https://www.orphadata.

com/linearisation/). Orphadata provides phenotype profiles on 1,184

rare neurologic diseases (https://www.orphadata.com/phenotypes/).

Neuro-phenotyping is the deep phenotyping of neurological disease

(1). We have suggested that most neuro-phenotyping can be done

with a restricted vocabulary of about 1,600 concepts (12). Although

lists of phenotypic features for neurological diagnoses can be retrieved

from Orphadata, OMIM, or HPO, these lists are difficult to visualize.
Visualizations of disease phenotypes have
limitations

OMIM, Orphanet, and HPO yield lists of phenotype features of

variable length, sorted by alphabetical order, feature frequency, or

body system. For example, the Orphadata annotations for Dystonia

Type 13 (DYT13) are:
Very frequent

• stereotypy

• torsion dystonia

• torticollis

Frequent

• limb dystonia

• dystonia

• craniofacial dystonia

• jerky head movements

Occasional

• postural tremor

• action tremor

• focal dystonia

Rare
• Generalized dystonia

• Hoarse voice

Although useful, these lists have limitations. The lists may be long. In

the Orphanet dataset, 25% of the lists are more than 34 features in length.

Many of these lengths are beyond the length of 7+ 2 that is easily

comprehended (13). Side-by-side comparisons of lists are difficult

(Table 1). Lists of signs and symptoms from Orphadata may contain

pathologies (e.g., gliosis, Lewy bodies), radiological findings (e.g.,

abnormal PET FDG), biochemical findings, electrophysiological

findings, and modes of inheritance. Although terms in Orphadata are

from the HPO-controlled vocabulary (20,246 classes) (10), redundancies,

near-synonyms, hypernyms, and hyponyms populate the lists (e.g.,

dysarthria and slow slurred speech; bradykinesia and hypokinesia;

masked facies and hypomimia, etc.) Furthermore, OMIM, Orphadata,

and HPO do not provide native methods for visualization of phenotype.
Prior work

Limited work has been done on visualizing phenotype lists

retrieved from HPO, OMIM, or Orphadata. Xu et al. (14)
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visualized the distances between genetic diseases and their

underlying phenotypes using t-SNE (stochastic neighborhood

embedding) maps. The phenotype features from the OMIM dataset

were used to calculate distances between genetic diseases. The

t-SNE maps are a 2-dimensional representation of the distances

between genetic diseases derived from multi-dimensional data.

Although these t-SNE maps provide instructive information about

the distances between genetic diseases, they do not reveal the

details of the underlying phenotypes. Network analysis and

network graphs have been used to visualize the distances between

diseases based on their phenotype (15–17). However, these

network diagrams do not elucidate the underlying phenotypic

differences between the diseases. Several methods have been

proposed to visualize disease-phenotype relationships, including

radar graphs (18), co-occurrence charts (19), and sunburst

diagrams (20). Cao et al. have developed visualization techniques

called DICON, FacetAtlas, and SolarMap that show promise for

visualizing phenotype features by disease (21–24).

An additional barrier to visualizing neurology phenotype profiles

is the large number of terms in the HPO (N ¼ 20, 390), making the

number of columns in heat maps or tables impractical. A feature

reduction strategy that chunks phenotype features into a more

manageable number of superclasses is needed. For example, Hier

and Pearson (25) have suggested chunking problems in the

electronic health record by body system to increase the readability

of the problem list. Both OMIM and HPO chunk phenotype

features by body system. Orphanet chunks phenotype features by

feature frequency (common to rare). Yauy et al. (26) have chunked

16,600 phenotypic traits into 390 interacting symptom groups.

However, the chunking of phenotype features by body system is

unlikely to yield useful visualizations because dissimilar phenotypic

features are grouped together. For example, chunking concepts by

a nervous system category would put the unlike concepts of

hypertonia, hypotonia, hyperreflexia, and hyporeflexia into the

same category, a grouping of little diagnostic value. Although the

chunking of phenotype concepts by body system or other schemes

helps organize phenotype features, it does not reduce the number

of features. Since the HPO is a hierarchical containment ontology,

we have suggested that subsumption can create superclasses of

phenotypic features and reduce the number of features (27,28).
Proposed approach and use case

We propose to improve the visualization of neurology

phenotypes in the Orphdata dataset utilizing a combination of

subsumption, vectorization, heat maps, and word clouds.

As proof of concept, we illustrate the utility of this approach with

a use case that visualizes the phenotype lists of 32 dystonic diseases

from Orphadata. In 1911 Oppenheim described the disease

dystonia musculorum deformans and coined the term dystonia

(29). Albanese et al. (30) defined dystonia as “a rare movement

disorder characterized by sustained or intermittent muscle

contractions causing abnormal, often repetitive movements,

postures, or both.” Since the description of dystonia by

Oppenheim, many forms of dystonia have been described.

Dystonia is classified along two axes: clinical and etiologic (30).
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TABLE 1 The upper half of the Table shows lists of signs and symptoms for each dystonic disease from Orphadata.

Dystonias ! DYT16 DYT6 DYT27 DYT4

List of classes# Dystonia 16 Dystonia 6 Dystonia 27 Dystonia 4

Limb dystonia Dystonia Oral dystonia Blepharospasm

Torticollis Generalized dystonia Laryngeal dystonia Dementia

Dysarthria Dysarthria Action tremor Dysphagia

Parkinsonism Torticollis Writer’s cramp Dysphonia

Hyperreflexia Blepharospasm Limb dystonia Generalized dystonia

Dysphonia Laryngeal dystonia Axial dystonia Laryngeal dystonia

Dysphagia Craniofacial dystonia Focal dystonia Abnl tongue movement

Bradykinesia Lingual dystonia Postural tremor Open mouth

Postural tremor Limb dystonia Torticollis

Orofacial dyskinesia Gait disturbance

Unsteady gait Eunuchoid habitus

Pyramidal sign Sunken cheeks

Lower limb pain Involuntary movements

Motor delay Kyphoscoliosis

Intellectual disability Dysdiadochokinesis

Respiratory distress

Postural Tremor

Vector of superclasses # Subsumption and vectorization # Subsumption and vectorization # Subsumption and vectorization # Subsumption and vectorization #

Ataxia 0 0 0 1

Cognitive 1 0 0 1

Cranial nerve 1 0 0 2

Gait 1 0 0 1

Hyperkinesia 3 8 7 6

Hyperreflexia 1 0 0 0

Hypokinesia 2 0 0 0

Miscellaneous 2 0 0 4

Pain 1 0 0 0

Speech 2 1 0 1

Tremor 1 0 1 1

In the lower half of the Table, lists of classes have been converted to vectors of superclasses using subsumption governed by a lookup table. Counts are the number of times

each class occurs in the superclass and is the input for the row values for the heat maps. Columns from the top half are variable length lists; columns from the bottom half are

fixed length vectors.
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Clinical classification is by age at onset, body distribution, the temporal

pattern of symptoms, and associated phenotype features. Etiologic

classification is by genetic versus non-genetic causation. Dystonia is

one of the hyperkinetic movement disorders which also encompasses

chorea, athetosis, hemiballismus, tics, tremors, stereotypy, myoclonus,

and dyskinesia (31). Although all diseases labeled dystonia have a

core symptom of dystonia, there is considerable variability in the

clinical presentation (signs and symptoms) of the dystonias

(29,32,33), making it an excellent use case for phenotype

visualization. Furthermore, better characterization and classification

of the dystonias is a major initiative of the European Reference

Network for Rare Diseases, and Orphadata (34,35).
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We downloaded the most recent Orphadata file with phenotype

annotations of 4,254 rare diseases, including 1,184 rare neurological

diseases. We identified 2,946 unique HPO terms used to characterize

the signs and symptoms of rare neurological diseases and created a

lookup table to map each term to one of 30 superclasses based on

subsumption and expert opinion. The lists of phenotypic features for

32 dystonic diseases from Orphadata were converted into 31-element

vectors, with the first element of the vector being the disease name

and the next 30 elements being the count of features (signs and

symptoms) for each superclass. The full 32-row � 31-column matrix

of the dystonic diseases can be visualized as a feature map (Figure 2);

individual rows can be visualized as word clouds (Figure 3B).
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Methods

Phenotype feature lists by disease (data
acquisition)

An XML file with 4,254 rare disease disorders and 112,256

phenotypic annotations was downloaded (June 2022 release of

Orphadata: (https://www.orphadata.com/phenotypes/). Phenotype

features are coded using the HPO ontology. Orphadata defines a

rare disease as affecting less than 1 in 2,000 individuals in Europe

and classifies 1,184 of the diseases as rare neurological diseases. We

used python to parse the XML file and create a variable-length list

of phenotypic features for each disease. We retained phenotypic

annotations that were clinical signs or symptoms and filtered out

phenotypic annotations related to disease course (progressive,

static, etc.), mode of inheritance (recessive, dominant, etc.),

biochemical abnormality, radiological abnormality, pathological

abnormality, or electrophysiological abnormality. Based on

published literature, Orphadata classifies the frequency of each

phenotypic feature from rare (1–4%) to always present (100%). We

retained phenotypic features classified as occasional or higher

(5–100%).
Lookup table to convert phenotype classes
to superclasses (subsumption)

The HPO (10) is organized as a hierarchical subsumption

ontology so that more-specific concepts in the ontology are

subsumed by more general concepts (28). We identified 2,946

unique concepts that Orphadata used to phenotype neurological

diseases. We collapsed these concepts into 30 superclasses using

subsumption and domain expert opinion. Example class

memberships and class counts are shown for each superclass below.

1. alertness (53 terms) delirium, drowsy, somnolence

2. ataxia (62 terms) asynergia, clumsiness, dystaxia

3. atrophy (69 terms) muscle atrophy, atrophy, limb fasciculations

4. behavior (238 terms) apathy, anxiety, delusions

5. cognitive (202 terms) agnosia, apraxia, forgetfulness

6. cranial nerve (203 terms) ageusia, hyperacusis, facial diplegia

7. dysautonomia (35 terms) hypohidrosis, orthostatic syncope,

dysautonomia

8. eye movements (272 terms) upgaze palsy, nystagmus, hypometric

saccades

9. fatigue (26 terms) muscle fatigue, fatigable weakness, fatigue

10. gait (110 terms) ataxic gait, falls, unsteady gait

11. head (263 terms) microcephaly, macrocephaly, increased head

size

12. hyperkinesia (157 terms) dyskinesia, dystonia, hyperkinesia

13. hyperreflexia (58 terms) increased reflexes, clonus, hyperreflexia

14. hypertonia (58 terms) increased muscle tone, rigidity, spasticity

15. hypokinesia (66 terms) bradykinesia, akinesia, hypomimia

16. hyporeflexia (43 terms) areflexia, hyporeflexia, absent ankle

reflex

17. hypotonia (19 terms) decreased tone, muscle flaccidity, limb

hypotonia
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18. other muscle (119 terms) myokymia, muscle hypertrophy,

myotonia

19. neck (48 terms) stiff neck, neck rigidity, meningismus

20. pain (145 terms) pain, arm pain, allodynia

21. seizure (358 terms) seizure, tonic-clonic seizure, febrile seizure

22. sensory (192 terms) hyperesthesia, dysesthesia, hypesthesia

23. skin (194 terms) cafe au lait spots, petechiae, rash

24. sleep (48 terms) cataplexy, narcolepsy, hypersomnia

25. speech_language (116 terms) dysarthria, aphasia, echolalia

26. sphincter (67 terms) urinary incontinence, constipation,

enuresis

27. tremor (48 terms) tremor, resting tremor, action tremor

28. vision (450 terms) achromatopsia, scotoma, optic atrophy

29. weakness (159 terms) proximal weakness, foot drop, triceps

weakness

30. miscellaneous (618 terms) nausea, vomiting, bradycardia
We used python to assign each phenotypic feature (sign or

symptom) to one of the thirty superclasses based on the lookup

table (see Table 1 for an illustration of how individual phenotype

features were mapped to superclasses). The lookup table is

available in the Supplementary Materials.
Vectorization (conversion of phenotype lists
to phenotype vectors)

Variable-length lists of phenotypic features were converted into

vectors of fixed length 31 elements. The first element of the list

was the disease label, and the following 30 elements were the

counts of features in each of the 30 superclasses based on the

lookup table. When the phenotype is represented as a vector,

phenotypes can be compared by distance metrics. Furthermore, the

magnitude of each element in the phenotype vector carries

additional information that allows comparisons between diseases.

For example, one disease with hyperkinetic features dystonia,

chorea, and athetosis would have a hyperkinesia superclass value of

n ¼ 3, whereas a disease with only dystonia would have a

hyperkinesia superclass value of n ¼ 1. Such weightings could be

useful in distinguishing between phenotypes of similar diseases.
Visualization (creation of heat maps and
word clouds

Heat maps and word clouds were based on the phenotype vectors

generated by python. Heat maps were created using the heat map

widget from Orange (36). The score mapped for each superclass

was the count of the phenotype features subsumed by that class.

When a superclass had no features assigned to it, that superclass

was dropped from the heat map. Word clouds were produced

using the word cloud widget from Orange. Word size in the word

cloud reflected the frequency of phenotypic features for a group of

diseases (Figure 1B) or a single disease (Figure 3B).
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FIGURE 1

(A) To characterize the 32 dystonic diseases, 528 total concepts and 252 unique concepts were used. The most frequent concepts used were dystonia,
bradykinesia, generalized dystonia, dysarthria, and focal dystonia. (B) After feature reduction by subsumption, the number of superclasses needed to
characterize dystonia diseases was reduced to nineteen. The largest superclass is hyperkinesia which encompasses dystonia, generalized dystonia, focal
dystonia, blepharospasm, craniofacial dystonia, and others.

Hier et al. 10.3389/fdgth.2023.1064936
Results

As our use case, we examined the phenotype profiles of 32

disease variants of dystonia in Orphadata. Phenotype profiles were

lists of features (see Table 1 for examples of DYT4, DYT6, DYT16,

and DYT27). Feature lists ranged from 5 to 48 elements, with a

mean of 18.4 features +10.5. The 252 unique features in the

phenotype lists were reduced by subsumption into one of the 19

available 30 superclasses (Table 1 and Figure 1A,B). This allowed
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visualization of the entire dystonia disease set of 32 variants as a

heat map (Figure 2). This heat map allows an easy distinction of

pure dystonia (e.g., DYT25 and DYT26) from dystonias with

sensory loss (e.g., autosomal dominant dopa-responsive dystonia),

cognitive impairment (e.g., DYT4) and hypokinesia (e.g., adult-

onset dystonia-parkinsonism). Individual rows in the heat map

(Figure 3A can be further visualized with word clouds which

emphasize phenotypic differences between the dystonia variants

(see Figure 3B for word clouds of DYT4, DY6, DYT16, and DYT 27.)
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FIGURE 2

Feature map of 32 dystonias from Orphadata. Each row is a different variant of dystonia. Each column is one of 19 phenotype superclasses. Counts in columns
range from 0 to 8. The color scale is centered at 1. Rows and columns are clustered by hierarchical clustering with Ward linkage. Distances between columns
are by Pearson correlation coefficient. Distances between rows are by Euclidean distance. Hyperkinesia is the most frequent feature, followed by tremor,
behavior, hypokinesia, speech_language, and miscellaneous (See word cloud in Figure 1B). Data underlying this table is available in the Supplementary
Materials.
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Discussion

Rich and detailed information on the phenotypes of neurological

diseases is held in online repositories such as OMIM, HPO, and

Orphadata. Detailed phenotypic data is available for download and

can be used to gain insights into the inter-relationships between

genes, disease, and phenotypes. Nonetheless, the visualization of

the phenotypes retrieved as lists remains problematic. We

identified several limitations to the visualization of disease

phenotypes that included:

1. Phenotype feature lists are long.

2. Too many of the phenotype features are near synonyms,

hyponyms, or hypernyms.

3. The number of unique features is large.
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4. Side-by-side comparisons of phenotypes are difficult.

5. Phenotype lists of signs and symptoms are co-mingled with

radiological, pathological, biochemical, and electrophysiological

findings.

To address these limitations, we proposed restricting our

attention to visualizing the phenotypes of rare neurological diseases

in Orphadata (N ¼ 1, 184). We mapped each of the 4,505 unique

features used to describe signs and symptoms in Orphadata into

one of 30 superclasses (see list in the Methods section). This

allowed us to convert phenotype lists of variable length to vectors

of fixed length (31 elements), in which the first element of the

vector was the disease label and the next 30 elements were the

count of features for each of the 30 superclasses. This process of

converting a list to a vector is illustrated in Table 1 for DYT4,
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FIGURE 3

(A) Heat map of four selected cases of dystonia. Columns are feature
superclasses, and rows are diseases. heat maps and word clouds are
based on Table 1. Each row in the heat map represents a column of
signs and symptoms from Table 1. Feature scores range from 0 to 8,
with the color scale centered at 1. Word cloud visualizations of each
row are below. Compare to Table 1 for comprehensibility. (B) Word
clouds for the four forms of dystonia represented in the heat maps
above and Table 1. Word size reflects the feature count in each
superclass. DYT6 and DYT27 are pure dystonia, whereas DYT4 and
DYT16 have other non-dystonic features. Compare to Table 1 for
comprehensibility. Underlying data available in Supplementary Materials.
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DYT6, DYT16, and DYT27. Only 11 of the 30 superclasses were

needed to represent these four dystonias. Once phenotype lists are

converted to vectors, a group of diseases can be represented as a

matrix. For example, 32 dystonic diseases from Orphadata can be

converted to a matrix with 32 rows (each row a disease) and 20

columns (each column a superclass of phenotypic features plus one

column for the disease label) and then visualized as a heat map

(Figure 2). For easy readability, individual rows (diseases) in the

heat maps can be converted to word clouds to visualize better the

phenotype (Figure 3B).

We have addressed limitation (1) (long feature lists) by using

subsumption to collapse 4,505 phenotypic classes into 30

neurological superclasses. This subsumption of numerous

phenotypic features into 30 superclasses also addressed limitation
Frontiers in Digital Health 07
(2) (too many near-synonyms) and limitation (3) (too many

unique features). Once phenotype lists of variable length are

converted to vectors of fixed length, side-by-side comparisons of

diseases become feasible through the use of heat maps and word

clouds (Figures 3A,B); addressing limitation (4). Another

advantage of vectorization is that it allows the calculation of

distances between phenotypes using standard distance metrics such

as cosine and Euclidean. Figure 2 demonstrates the clustering of

rows (dystonic diseases) using the Euclidean distance. We filtered

out biochemical, radiological, electrophysiological, and pathological

features to address limitation (5) (thus, limiting the phenotype to

signs and symptoms.)

This work has some significant limitations. First, collapsing

granular phenotype features into superclasses by subsumption

involves information loss. The superclasses retain no laterality

information (left-sided versus right-sided weakness, etc.) The

superclasses retain no topographical information (proximal versus

distal weakness, etc.) The high information value of some granular

phenotype features, such as impaired vertical gaze (a sign of

progressive supranuclear palsy) or internuclear ophthalmoplegia

(a sign of multiple sclerosis), is lost when the granular features are

collapsed into the superclass of abnormal eye movements. Second,

our current process of collapsing phenotype concepts into

superclasses requires a manually constructed lookup table that

assigns each concept to a superclass. Errors can be made in

assigning concepts to superclasses. We are looking at ways to

improve the subsumption process that collapses ontology concepts

into superclasses. Third, heat map scales are non-linear. For each

superclass score, we counted the number of features in that

superclass. For example, a disease phenotype with the term

hemiparesis would have a superclass score of 1 for weakness. In

contrast, a disease phenotype with terms arm weakness and leg

weakness would have a superclass score of 2. Furthermore, we did

not weight phenotype features by importance. In building the

features maps, a more general concept like hyperreflexia carries the

same weight as a more limited concept such as increased biceps

reflex. We are exploring whether normalization or other

transformations of the underlying data would improve the utility of

the heat maps. Fourth, the size and granularity of the superclasses

were not uniform. For example, the vision superclass subsumed

450 concepts and had many different types of visual impairment,

whereas the fatigue superclass subsumed only 26 concepts and

reflected the concept of fatigue alone. Fifth, our selection of thirty

superclasses was somewhat arbitrary and subject to modification.

Although the selection of the thirty superclasses reflected domain

expert opinion and the underlying structure of the ontologies,

other useful partitions of the ontology into superclasses are

possible. For example, chorea or dystonia could have been distinct

superclasses instead of subsumed into hyperkinesia. Speech (e.g.,

dysarthria) and language disorders (e.g., aphasia) could have been

separate superclasses. Sixth, the superclasses were restricted to

neurological terms and neurological diseases. As a result, the heat

maps will not be useful in visualizing the phenotypes of non-

neurological diseases. Furthermore, the heat maps will not

adequately visualize important non-neurological signs and

symptoms of diagnostic value (such as Kayser-Fleisher rings for

Wilson’s disease (37)). Although true pathognomonic signs and
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symptoms are rare in neurology (1,38–40), the heat maps lack the

granularity to show pathognomonic signs. Furthermore, the

current heat maps do not support a drill down to the underlying

granular phenotype features. Although we used Orange to create

the heat maps, suitable heat maps are also available in python, and

R. Other heat map color schemes are available and may give better

visualizations. The Orphadata phenotype datasets are undergoing

revisions and improvements. Some diseases are phenotyped more

completely than others. Although the dataset is curated, omissions,

errors, and discrepancies can still occur. Finally, a similar analysis

could have been done with phenotypic annotations from the

OMIM or HPO datasets.

Despite these limitations, combining feature reduction by

subsumption with vectorization of phenotype lists followed by

visualization by heat maps and word clouds offers a robust method

to explore neurology phenotypes. Subsumption permits the

reduction of thousands of ontological concepts into a reduced

number of phenotype superclasses. Vectorization allows the

conversion of variable-length phenotype feature lists into superclass

vectors of fixed length. Matrices of superclass vectors allow the

side-by-side comparison of disease phenotypes as heat maps.

Individual rows in the heat maps can be visualized with word

clouds, providing an easy-to-grasp representation of a disease

phenotype.
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