22 research outputs found

    CCL2-Expressing Astrocytes Mediate the Extravasation of T Lymphocytes in the Brain. Evidence from Patients with Glioma and Experimental Models In Vivo

    Get PDF
    CCL2 is a chemokine involved in brain inflammation, but the way in which it contributes to the entrance of lymphocytes in the parenchyma is unclear. Imaging of the cell type responsible for this task and details on how the process takes place in vivo remain elusive. Herein, we analyze the cell type that overexpresses CCL2 in multiple scenarios of T-cell infiltration in the brain and in three different species. We observe that CCL2+ astrocytes play a part in the infiltration of T-cells in the brain and our analysis shows that the contact of T-cells with perivascular astrocytes occurs, suggesting that may be an important event for lymphocyte extravasation

    Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity

    Get PDF
    The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GR(Cx30CreERT2) mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GR(Cx30CreERT2) mutant mice in substantia nigra (SN) compared to controls. Hypertrophy of microglia but not of astrocytes was greatly enhanced in SN of these astrocytic GR mutants intoxicated with MPTP, indicating heightened microglial reactivity compared to similarly-treated control mice. In the SN of GR astrocyte mutants, specific inflammation-associated transcripts ICAM-1, TNF-alpha and Il-1 beta as well as TNF-alpha protein levels were significantly elevated after MPTP neurotoxicity compared to controls. Interestingly, this paralleled increased connexin hemichannel activity and elevated intracellular calcium levels in astrocytes examined in acute midbrain slices from control and mutant mice treated with MPP+. The increased connexin-43 hemichannel activity was found in vivo in MPTP-intoxicated mice. Importantly, treatment of MPTP-injected GR(Cx30CreERT2) mutant mice with TAT-Gap19 peptide, a specific connexin-43 hemichannel blocker, reverted both DN loss and microglial activation; in wild-type mice there was partial but significant survival effect. In the SN of postmortem PD patients, a significant decrease in the number of astrocytes expressing nuclear GR was observed, suggesting the participation of astrocytic GR deregulation of inflammatory process in PD. Overall, these data provide mechanistic insights into GR-modulated processes in vivo, specifically in astrocytes, that contribute to a pro-inflammatory state and dopamine neurodegeneration in PD pathology

    Astrocytes réactifs et maladies cérébrales: Biomarqueurs et cibles thérapeutiques

    No full text
    International audienceLes astrocytes sont des partenaires essentiels des neurones dans le système nerveux central. En réponse à de nombreuses maladies qui touchent le cerveau, les astrocytes subissent des modifications morphologiques, moléculaires et fonctionnelles : ils deviennent réactifs. Ces changements multiples sont susceptibles d’avoir un impact important sur les neurones, qui dépendent de nombreuses fonctions remplies par les astrocytes. La réponse de réactivité astrocytaire dépend du contexte pathologique. Il est donc indispensable de définir précisément les changements qui se produisent dans les astrocytes réactifs dans chaque situation pathologique, par des approches adaptées et sélectives. Cela permettra le développement de thérapies innovantes ciblant ces cellules partenaires des neurones, ainsi que l’identification de biomarqueurs spécifiques de certaines maladies cérébrales

    Elusive roles for reactive astrocytes in neurodegenerative diseases

    Get PDF
    International audienceAstrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND

    The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway?

    No full text
    International audienceAstrocytes play multiple important roles in brain physiology. In pathological conditions, they become reac-tive, which is characterized by morphological changes and upregulation of intermediate filament proteins. Besides these descriptive hallmarks, astrocyte reactivity involves significant transcriptional and functional changes that are far from being fully understood. Most importantly, astrocyte reactivity seems to encompass multiple states, each having a specific influence on surrounding cells and disease progression. These diverse functional states of reactivity must be regulated by subtle signaling networks. Many signaling cascades have been associated with astrocyte reactivity, but among them, the JAK-STAT3 pathway is emerging as a central regulator. In this review, we aim (i) to show that the JAK-STAT3 pathway plays a key role in the control of astrocyte reactivity, (ii) to illustrate that STAT3 is a pleiotropic molecule operating multiple functions in reactive astrocytes, and (iii) to suggest that each specific functional state of reactivity is governed by complex molecular interactions within astrocytes, which converge on STAT3. More research is needed to precisely identify the signaling networks controlling the diverse states of astro-cyte reactivity. Only then, we will be able to precisely delin-eate the therapeutic potential of reactive astrocytes in each neurological disease context.

    In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease

    Get PDF
    International audienceHuntington's disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive and psychiatric symptoms. Atrophy of the striatum has been proposed for several years as a biomarker to assess disease progression in HD gene carriers. However, it does not provide any information about the biological mechanisms linked to HD pathogenesis. Changes in brain metabolites have been also consistently seen in HD patients and animal models using Magnetic Resonance Spectroscopy (MRS), but metabolite measurements are generally limited to a single voxel. In this study, we used Chemical Exchange Saturation Transfer imaging of glutamate (gluCEST) in order to map glutamate distribution in the brain of a knock-in mouse model (Ki140CAG) with a precise anatomical resolution. We demonstrated that both heterozygous and homozygous mice with pathological CAG repeat expansion in gene encoding huntingtin exhibited an atrophy of the striatum and a significant alteration of their metabolic profile in the striatum as compared to wild type littermate controls. The striatal decrease was then confirmed by gluCEST imaging. Surprisingly, CEST imaging also revealed that the corpus callosum was the most affected structure in both genotype groups, suggesting that this structure could be highly vulnerable in HD. We evaluated for the first time gluCEST imaging as a potential biomarker of HD and demonstrated its potential for characterizing metabolic defects in neurodegenerative diseases in specific regions

    Diffusion-weighted magnetic resonance spectroscopy enables cell-specific monitoring of astrocyte reactivity in vivoin\ vivo

    No full text
    International audienceReactive astrocytes exhibit hypertrophic morphology and altered metabolism. Deciphering astrocytic status would be of great importance to understand their role and dysregulation in pathologies, but most analytical methods remain highly invasive or destructive. The diffusion of brain metabolites, as non-invasively measured using diffusion-weighted magnetic resonance spectroscopy (DW-MRS) in vivoin\ vivo, depends on the structure of their micro-environment. Here we perform advanced DW-MRS in a mouse model of reactive astrocytes to determine how cellular compartments confining metabolite diffusion are changing. This reveals myo-inositol as a specific intra-astrocytic marker whose diffusion closely reflects astrocytic morphology, enabling non-invasive detection of astrocyte hypertrophy (subsequently confirmed by confocal microscopy ex vivoex\ vivo). Furthermore, we measure massive variations of lactate diffusion properties, suggesting that intracellular lactate is predominantly astrocytic under control conditions, but predominantly neuronal in case of astrocyte reactivity. This indicates massive remodeling of lactate metabolism, as lactate compartmentation is tightly linked to the astrocyte-to-neuron lactate shuttle mechanism

    The Neuroprotective Agent CNTF Decreases Neuronal Metabolites in the Rat Striatum: An in Vivoin\ Vivo Multimodal Magnetic Resonance Imaging Study

    No full text
    International audienceCiliary neurotrophic factor (CNTF) is neuroprotective against multiple pathologic conditions including metabolic impairment, but the mechanisms are still unclear. To delineate CNTF effects on brain energy homeostasis, we performed a multimodal imaging study, combining in vivo proton magnetic resonance spectroscopy, high-performance liquid chromatography analysis, and in situ glutamate imaging by chemical exchange saturation transfer. Unexpectedly, we found that CNTF expression through lentiviral gene transfer in the rat striatum significantly decreased the levels of neuronal metabolites (N-acetyl-aspartate, N-acetyl-aspartyl-glutamate, and glutamate). This preclinical study shows that CNTF remodels brain metabolism, and suggests that decreased levels of neuronal metabolites may occur in the absence of neuronal dysfunction
    corecore