664 research outputs found

    On the radial distribution of stars of different stellar generations in the globular cluster NGC 3201

    Full text link
    We study the radial distribution of stars of different stellar generations in the globular cluster NGC 3201. From recently published multicolour photometry, a radial dependence of the location of stars on the giant branch was found. We coupled the photometric information to our sample of 100 red giants with Na, O abundances and known classification as first or second-generation stars. We find that giants stars of the second generation in NGC 3201 show a tendency to be more centrally concentrated than stars of the first generation, supporting less robust results from our spectroscopic analysis.Comment: Accepted for publication on Astronomy and Astrophysic

    Aluminum abundances of multiple stellar generations in the globular cluster NGC 1851

    Full text link
    We study the distribution of aluminum abundances among red giants in the peculiar globular cluster NGC 1851. Aluminum abundances were derived from the strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES spectra of 50 cluster stars acquired under the Gaia-ESO public survey. We coupled these abundances with previously derived abundance of O, Na, Mg to fully characterize the interplay of the NeNa and MgAl cycles of H-burning at high temperature in the early stellar generation in NGC 1851. The stars in our sample show well defined correlations between Al,Na and Si; Al is anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily increases going from the first generation stars to the second generation populations with intermediate and extremely modified composition. We confirm on a larger database the results recently obtained by us (Carretta et al. 2011a): the pattern of abundances of proton-capture elements implies a moderate production of Al in NGC 1851. We find evidence of a statistically significant positive correlation between Al and Ba abundances in the more metal-rich component of red giants in NGC 1851.Comment: Astronomy and Astrophysics, in pres

    A Stromgren view of the multiple populations in globular clusters

    Full text link
    We discuss a variety of photometric indices assembled from the uvby Stromgren system. Our aim is to examine the pros and cons of the various indices to find the most suitable one(s) to study the properties of multiple populations in globular clusters (GCs) discovered by spectroscopy. We explore in particular the capabilities of indices like m_1 and c_y at different metallicities. We define a new index delta_4=(u-v)-(b-y) to separate first and second stellar generations in GCs of any metal abundance, since it keeps the sensitivity to multiple stellar populations over all the metallicity range and at the same time minimizes the sensitivity to photometric errors. We detecte clear differences in the red giant branches of the GCs examined, like skewness or bi/multi-modality in color distribution. We connect the photometric information with the spectroscopic results on O, Na abundances we obtained in our survey of GCs. Finally, we compute the effects of different chemical composition on the Stromgren filters and indices using synthetic spectra.Comment: Accepted for publication on Astronomy and Astrophysics. Figures 1,3,5 degraded in resolutio

    Helium in first and second-generation stars in Globular Clusters from spectroscopy of red giants

    Full text link
    (abridged) Recent spectroscopic and photometric observations show the existence of various generations of stars in GCs, differing in the abundances of products of H-burning at high temperatures (the main final product being He). It is important to study the connections between stars properties and He content. We consider here the about 1400 stars on the Red Giant Branch (RGB) observed with FLAMES@VLT in 19 Galactic GCs, part of out Na-O anticorrelation projet. Stars with different He are expected to have different temperatures (i.e. colours), slightly different [Fe/H], and different luminosity levels of the RGB bump. All these differences are small, but our study has the necessary precision, good statistics, and homogeneity to detect them. We also computed suitable sets of stellar models (BaSTI) for various assumptions about the initial helium content. Differences in observable quantities that can be attributed to variations in He content are generally detectable between stars of the Primordial (P, first-generation) and Extreme (E, second-generation) populations, but not between the Primordial and Intermediate ones (I). The only exception (differences are significant also between P and I populations) is NGC2808, where three populations are clearly separated also on the Main Sequence and the Horizontal Branch. The average enhancement in the He mass fraction Y between P and E stars is about 0.05-0.11, depending on the assumptions. The differences in Y, for NGC2808 alone, are about 0.11-0.14 between P and I stars, and about 0.15-0.19 between P and E stars, again depending on the assumptions. The RGB bump luminosity of first and second-generation stars has different levels; the implied Y difference is more difficult to quantify, but is in agreement with the other determinations.Comment: In press on A&

    Intrinsic iron spread and a new metallicity scale for Globular Clusters

    Full text link
    We have collected spectra of about 2000 red giant branch (RGB) stars in 19 Galactic globular clusters (GC) using FLAMES@VLT (about 100 star with GIRAFFE and about 10 with UVES, respectively, in each GC). These observations provide an unprecedented, precise, and homogeneous data-set of Fe abundances in GCs. We use it to study the cosmic scatter of iron and find that, as far as Fe is concerned, most GCs can still be considered mono-metallic, since the upper limit to the scatter in iron is less than 0.05 dex, meaning that the degree of homogeneity is better than 12%. The scatter in Fe we find seems to have a dependence on luminosity, possibly due to the well-known inadequacies of stellar atmospheres for upper-RGB stars and/or to intrinsic variability. It also seems to be correlated with cluster properties, like the mass, indicating a larger scatter in more massive GCs which is likely a (small) true intrinsic scatter. The 19 GCs, covering the metallicity range of the bulk of Galactic GCs, define an accurate and updated metallicity scale. We provide transformation equations for a few existing scales. We also provide new values of [Fe/H], on our scale, for all GCs in the Harris' catalogue.Comment: 14 pages, 13 figures, accepted for publication on Astronomy and Astrophysic

    Ba & Eu Abundances in M15 giant stars

    Full text link
    To investigate the Ba and Eu abundances for a sample of 63 giant stars in the globular cluster M15. This is the largest sample of M15 giants stars for which Ba abundances have been determined and, due to the target selection of the original research programme, the Ba abundances are complete along the red giant branch. Stellar parameters were taken from the previous key study and a microturbulence-surface gravity relation was determined for precise measurement of the Ba line at 6496.898 Angstroms, which has a high sensitivity to microturbulence. Element abundances for Ba, La, Eu, Ca, Ni and Fe were calculated using spectrum synthesis and equivalent widths techniques. A bimodal distribution in Ba, Eu and La abundances was found within the sample. The low Ba,Eu,La mode had mean abundances of =-2.41+/-0.16, =-1.80+/-0.08 and =-2.19+/-0.13 while the high Ba,Eu,La mode had mean abundances of =-2.00+/-0.16, =-1.65+/-0.13 and =-1.95+/-0.11. Both modes are indicative of a pollution scenario dominated by the r-process, hence contributions from explosive nucleosynthesis of massive stars. There may be evidence of further enhancement by another heavy element process and of potential anticorrelations in Na-O for both modes indicating a complex formation and evolution history for M15.Comment: 20 pages, 15 figure

    Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus

    Full text link
    Homogeneous abundances of light elements, alpha and Fe-group elements from high-resolution FLAMES spectra are presented for 76 red giant stars in M54, a massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf galaxy. We also derived detailed abundances for 27 red giants belonging to the Sgr nucleus. Our abundances assess the intrinsic metallicity dispersion (~0.19 dex, rms scatter) of M54, with the bulk of stars peaking at [Fe/H]~-1.6 and a long tail extending to higher metallicities, similar to omega Cen. The spread in these probable nuclear star clusters exceeds those of most GCs: these massive clusters are located in a region intermediate between normal GCs and dwarf galaxies. M54 shows the Na-O anticorrelation, typical signature of GCs, which is instead absent in the Sgr nucleus. The light elements (Mg, Al, Si) participating to the high temperature Mg-Al cycle show that the pattern of (anti)correlations produced by proton-capture reactions in H-burning is clearly different between the most metal-rich and most metal-poor components in the two most massive GCs in the Galaxy, confirming early result based on the Na-O anticorrelation. As in omega Cen, stars affected by most extreme processing, i.e. showing the signature of more massive polluters, are those of the metal-rich component. This can be understood if the burst of star formation giving birth to the metal-rich component was delayed by as much as 10-30 Myr with respect to the metal-poor one. The evolution of these massive GCs can be reconciled in the general scenario for the formation of GCs sketched in Carretta et al.(2010a) taking into account that omega Cen could have already incorporated the surrounding nucleus of its progenitor and lost the rest of the hosting galaxy while the two are still observable as distinct components in M54 and the surrounding field.Comment: 22 pages (3 pages of appendix), 25 figures. Tables 2, 3, 5, 6, and 7 are only available in electronic form at the CDS Accepted for publication on Astronomy and Astrophysic

    Multiple populations in Omega Centauri: a cluster analysis of spectroscopic data

    Full text link
    Omega Cen is composed of several stellar populations. Their history might allow us to reconstruct the evolution of this complex object. We performed a statistical cluster analysis on the large data set provided by Johnson and Pilachowski (2010). Stars in Omega Cen divide into three main groups. The metal-poor group includes about a third of the total. It shows a moderate O-Na anticorrelation, and similarly to other clusters, the O-poor second generation stars are more centrally concentrated than the O-rich first generation ones. This whole population is La-poor, with a pattern of abundances for n-capture elements which is very close to a scaled r-process one. The metal-intermediate group includes the majority of the cluster stars. This is a much more complex population, with an internal spread in the abundances of most elements. It shows an extreme O-Na anticorrelation, with a very numerous population of extremely O-poor and He-rich second generation stars. This second generation is very centrally concentrated. This whole population is La-rich, with a pattern of the abundances of n-capture elements that shows a strong contribution by the s-process. The spread in metallicity within this metal-intermediate population is not very large, and we might attribute it either to non uniformities of an originally very extended star forming region, or to some ability to retain a fraction of the ejecta of the core collapse SNe that exploded first, or both. As previously noticed, the metal-rich group has an Na-O correlation, rather than anticorrelation. There is evidence for the contribution of both massive stars ending their life as core-collapse SNe, and intermediate/low mass stars, producing the s-capture elements. Kinematics of this population suggests that it formed within the cluster rather than being accreted.Comment: Accepted for publication in Astronomy and Astrophysic

    The connection between missing AGB stars and extended horizontal branches

    Full text link
    Recent surveys confirm early results about a deficiency or even absence of CN-strong stars on the asymptotic giant branch (AGB) of globular clusters (GCs), although with quite large cluster-to-cluster variations. In general, this is at odds with the distribution of CN band strengths among first ascent red giant branch (RGB) stars. Norris et al. proposed that the lack of CN-strong stars in some clusters is a consequence of a smaller mass of these stars that cannot evolve through the full AGB phase. In this short paper we found that the relative frequency of AGB stars can change by a factor of two between different clusters. We also find a very good correlation between the minimum mass of stars along the horizontal branch (Gratton et al. 2010) and the relative frequency of AGB stars, with a further dependence on metallicity. We conclude that indeed the stars with the smallest mass on the HB cannot evolve through the full AGB phase, being AGB-manque'. These stars likely had large He and N content, and large O-depletion. We then argue that there should not be AGB stars with extreme O depletion, and few of them with a moderate one.Comment: 5 Pages, 2 figures, A&A Accepte

    Spectroscopy of Red Giants in the globular cluster Terzan 8: kinematics and evidence for the surrounding Sagittarius stream

    Full text link
    We present the results of a spectroscopic survey of Red Giants in the globular cluster Terzan 8 with the aim of studying its kinematics. We derived accurate radial velocities for 82 stars located in the innermost 7 arcmin from the cluster center identifying 48 bona fide cluster members. The kinematics of the cluster have been compared with a set of dynamical models accounting for the effect of mass segregation and a variable fraction of binaries. The derived velocity dispersion appears to be larger than that predicted for mass-segregated stellar systems without binaries, indicating that either the cluster is dynamically young or it contains a large fraction of binaries (>30%). We detected 7 stars with a radial velocity compatible with the cluster systemic velocity but with chemical patterns which stray from those of both the cluster and the Galactic field. These stars are likely members of the Sagittarius stream surrounding this stellar system.Comment: 10 pages, 8 figures, accepted for publication by MNRA
    • …
    corecore