921 research outputs found

    ALICE potential for heavy-flavour physics

    Get PDF
    The Large Hadron Collider (LHC), where lead nuclei will collide at the unprecedented c.m.s. energy of 5.5 TeV per nucleon-nucleon pair, will offer new and unique opportunities for the study of the properties of strongly interacting matter at high energy density over extended volumes. We will briefly explain why heavy-flavour particles are well-suited tools for such a study and we will describe how the ALICE experiment is preparing to make use of these tools.Comment: 6 pages, 3 figures, prepared for the Proceedings of "Strange Quark Matter 2007", Levoca, Slovaki

    Charm and beauty of the Large Hadron Collider

    Get PDF
    With the acceleration of lead nuclei in the LHC, heavy-ion physics will enter a new energy domain. One of the main novelties introduced by the 30-fold energy-jump from RHIC to the LHC is the abundant heavy-quark production. After discussing a few examples of physics issues that can be addressed using heavy quarks, we present a selection of results on the expected experimental capability of ALICE, the dedicated heavy-ion experiment at the LHC, in the open-heavy-flavour sector.Comment: 10 pages, 5 figures. Invited talk at Strangeness in Quark Matter (SQM) 2004, Cape Town, South Africa, 15-20 September 2004. Submitted to J. Phys.

    Charm quenching in heavy-ion collisions at the LHC

    Get PDF
    D-meson suppression in Pb-Pb collisions at the LHC due to charm quark in-medium energy loss is estimated within a model that describes the available quenching measurements at RHIC. The result is compared to that previously published by the author. The expected sensitivity of the ALICE experiment for studying charm energy loss via fully-reconstructed D^0-meson decays is also presented.Comment: 8 pages, 3 figures. To appear in the proceedings of Hot Quarks 2004: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Taos Valley, New Mexico, 18-24 July 2004. Submitted to J. Phys.

    Measuring beauty production in Pb-Pb collisions at the LHC via single electrons in ALICE

    Full text link
    We present the expected ALICE performance for the measurement of the p_t-differential cross section of electrons from beauty decays in central Pb-Pb collisions at the LHC.Comment: 4 pages, 2 figures, proceeding of poster presentation at "Quark Matter 2005

    Scalar wave equation by the boundary element method: a D-BEM approach with non-homogeneous initial conditions

    Get PDF
    International audienceThis work is concerned with the development of a D-BEM approach to the solution of 2D scalar wave propagation problems. The time-marching process can be accomplished with the use of the Houbolt method, as usual, or with the use of the Newmark method. Special attention was devoted to the development of a procedure that allows for the computation of the initial conditions contributions. In order to verify the applicability of the Newmark method and also the correctness of the expressions concerned with the computation of the initial conditions contributions, four examples are presented and the D-BEM results are compared with the corresponding analytical solutions

    Canonical aspects of strangeness enhancement

    Get PDF
    Strangeness enhancement (SE) in heavy ion collisions can be understood in the statistical model on the basis of canonical suppression. In this formulation,SE is a consequence of the transition from canonical to the asymptotic grand canonical limit and is predicted to be a decreasing function of collision energy. This model predictions are consistent with the recent NA49 data on Λ\Lambda enhancement at plab=40,80,158p_{lab}=40, 80, 158 GeV.Comment: 4 pages, 4 figures. To appear in the proceedings of Quark Matter 2002 (Nantes, France

    A Human-Derived Monoclonal Antibody Targeting Extracellular Connexin Domain Selectively Modulates Hemichannel Function

    Get PDF
    Connexin hemichannels, which are plasma membrane hexameric channels (connexons) composed of connexin protein protomers, have been implicated in a host of physiological processes and pathological conditions. A number of single point pathological mutations impart a "leaky" character to the affected hemichannels, i.e., make them more active or hyperactive, suggesting that normal physiological condition could be recovered using selective hemichannel inhibitors. Recently, a human-derived monoclonal antibody named abEC1.1 has been shown to inhibit both wild type and hyperactive hemichannels composed of human (h) connexin 26 (hCx26) subunits. The aims of this work were (1) to characterize further the ability of abEC1.1 to selectively modulate connexin hemichannel function and (2) to assess its in vitro stability in view of future translational applications. In silico analysis of abEC1.1 interaction with the hCx26 hemichannel identified critically important extracellular domain amino acids that are conserved in connexin 30 (hCx30) and connexin 32 (hCx32). Patch clamp experiments performed in HeLa DH cells confirmed the inhibition efficiency of abEC1.1 was comparable for hCx26, hCx30 and hCx32 hemichannels. Of note, even a single amino acid difference in the putative binding region reduced drastically the inhibitory effects of the antibody on all the other tested hemichannels, namely hCx30.2/31.3, hCx30.3, hCx31, hCx31.1, hCx37, hCx43 and hCx45. Plasma membrane channels composed of pannexin 1 were not affected by abEC1.1. Finally, size exclusion chromatography assays showed the antibody does not aggregate appreciably in vitro. Altogether, these results indicate abEC1.1 is a promising tool for further translational studies

    Growth form and leaf habit drive contrasting effects of Arctic amplification in long-lived woody species

    Get PDF
    Current global change is inducing heterogeneous warming trends worldwide, with faster rates at higher latitudes in the Northern Hemisphere. Consequently, tundra vegetation is experiencing an increase in growth rate and uneven but expanding distribution. Yet, the drivers of this heterogeneity in woody species responses are still unclear. Here, applying a retrospective approach and focusing on long-term responses, we aim to get insight into growth trends and climate sensitivity of long-lived woody species belonging to different functional types with contrasting growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites across Iceland. We modelled growth trends and contrasted yearly ring-width measurements, filtering in high- and low-frequency components, with precipitation, land- and sea-surface temperature records (1967-2018). Shrubs and trees showed divergent growth trends, with shrubs closely tracking the recent warming, whereas trees, especially broadleaved, showed strong fluctuations but no long-term growth trends. Secondary growth, particularly the high-frequency component, was positively correlated with summer temperatures for most of the species. On the contrary, growth responses to sea surface temperature, especially in the low frequency, were highly diverging between growth forms, with a strong positive association for shrubs and a negative for trees. Within comparable vegetation assemblage, long-lived woody species could show contrasting responses to similar climatic conditions. Given the predominant role of oceanic masses in shaping climate patterns in the Arctic and Low Arctic, further investigations are needed to deepen the knowledge on the complex interplay between coastal tundra ecosystems and land-sea surface temperature dynamics

    Can Polarity-Inverted Surfactants Self-Assemble in Nonpolar Solvents

    Get PDF
    We investigate the self-assembly process of a surfactant with inverted polarity in water and cyclohexane using both all-atom and coarse grained hybrid particle-field molecular dynamics simulations. Unlike conventional surfactants, the molecule under study, proposed in a recent experiment, is formed by a rigid and compact hydrophobic adamantane moiety, and a long and floppy triethylene glycol tail. In water, we report the formation of stable inverted micelles with the adamantane heads grouping together into a hydrophobic core, and the tails forming hydrogen bonds with water. By contrast, microsecond simulations do not provide evidence of stable micelle formation in cyclohexane. Validating the computational results by comparison with experimental diffusion constant and small-angle X-ray scattering intensity, we show that at laboratory thermodynamic conditions the mixture resides in the supercritical region of the phase diagram, where aggregated and free surfactant states co-exist in solution. Our simulations also provide indications about how to escape this region, to produce thermodynamically stable micellar aggregates.Comment: 14 pages, 10 Figures, accepted for publication (2020
    • …
    corecore