Can Polarity-Inverted Surfactants Self-Assemble in Nonpolar Solvents?
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We investigate the self-assembly process of a surfactant with inverted polarity in water and cyclohex-
ane using both all-atom and coarse grained hybrid particle-field molecular dynamics simulations.
Unlike conventional surfactants, the molecule under study, proposed in a recent experiment, is
formed by a rigid and compact hydrophobic adamantane moiety, and a long and floppy triethylene
glycol tail. In water, we report the formation of stable inverted micelles with the adamantane heads
grouping together into a hydrophobic core, and the tails forming hydrogen bonds with water. By
contrast, microsecond simulations do not provide evidence of stable micelle formation in cyclohex-
ane. Validating the computational results by comparison with experimental diffusion constant and
small-angle X-ray scattering intensity, we show that at laboratory thermodynamic conditions the
mixture resides in the supercritical region of the phase diagram, where aggregated and free surfac-
tant states co-exist in solution. Our simulations also provide indications about how to escape this
region, to produce thermodynamically stable micellar aggregates.
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I. INTRODUCTION

Life as we know it could not exist without water. In fact, living cells survive in environments mainly constituted
by water. Cellular shape and functionality is determined by the presence of both the plasma and the cytoplasmic
membrane, which define all the necessary compartments for the organisation of the cellular matter, as well as to
prevent mixing of the cell with its external environment. To this aim, living organisms typically exploit biological
lipids, amphiphile molecules comprising a strongly polar head group and one or more long hydrocarbon tails[1]. In
aqueous solutions, these amphiphilic molecules tend to aggregate driven by ’like-to-like’ interactions that are usually
referred to as the hydrophobic effect[2]. Within this general framework, water is unique because it forms hydrogen
bonds with itself as well as with the polar moiety of the amphiphilic molecule. Hydrogen bonds play a special
intermediate role as they have a strength of the order of 10-40kJ/mol (corresponding to 5-10 kg7/ bond at 298 K),
much stronger than van der Waals interactions (&~ 1kJ/mol), and considerably weaker than ionic or covalent bonds
(= 100kJ/mol or more). Also, hydrogen bonds have an intermediate orientation-dependence that is in-between the
strongly directional covalent and isotropic van der Waals interactions.

While this marvelous balance is the result of millions of years of evolution, it is possible to imagine that a similar
outcome could be achieved in different biological environments under different conditions, such as those present in
other planets of our universe. Although water has been detected in various thermodynamic states in our solar system,
an alternative scenario suggests the possibility of using polarity-inverted membranes in non-polar solvents, such as
the hydrocarbons frequently found in earth-like systems (see the recent review by Sandstrom(3]). Motivated by this
idea, a number of related studies have recently been conducted. Pace and collaborators investigated protein stability
in a non-aqueous solvent such as cyclohexane (CgHiz).[4] Hayashi et al. found that while proteins have well-defined
unique structures in water, this is generally not the case in other non-polar solvents.[5, 6] The stability of single polar
and hydrophobic amino acids in water and non-polar solvents have also been studied (unpublished results). To close
the triangle of life, the stability of B-DNA under non-aqueous conditions has also been recently assessed.|[7]

Notwithstanding the large number of studies that have been addressing the issue, the basic mechanism underlying
a solvophobic effect in non-polar solvents is still far from being fully understood. In its simplest terms it could be
stated as follows. If the polarity of amphiphilic molecules is inverted, so to have a hydrophobic (rather than polar)
head, and a polar (rather than hydrophobic) tail, would they self-assemble in non-polar solvents such as, for example,
CgH12? And if so, what would the driving force be?

Recently such an experiment has been performed on a newly synthesized molecule having exactly these features[8].
This molecule, henceforth referred to as ADOH, is formed by a rigid and compact adamantane moiety AD and a
long and floppy tail that consists of a triethylene glycol (TEG) with a characteristic group O—CHs—CHs capped at
the end by a hydroxyl group that is able to form hydrogen bonds (Figure 1). The self-assembly properties of ADOH
were studied by measuring its diffusion coefficient in CgH12, using nuclear magnetic resonance (NMR) spectroscopy at
different concentrations. A monotonic decrease of the diffusion coefficient, which is a possible signal of the micellization
process, was observed in the concentration range from 5 to 250 mM and this hypothesis was further supported by
small angle X-ray scattering (SAXS) measurements that appeared to indicate a critical micelle concentration (CMC)
around 100 mM. While through the Stokes-Einstein equation this decrease in the diffusion coefficient can be ascribed
to the appearance of large aggregates, it alone does not constitute proof of the existence of aggregates with well-
defined micellar shape, especially considering the fact that directional-dependent polar interactions, such as hydrogen
bonds, are significantly stronger compared with non-directional van der Waals interactions. Moreover, while SAXS
experiments provide essential system information on properties such as micelle sizes, the interpretation of aggregates
in terms of shapes requires post-processing by modeling, which is prone to errors. Thus a molecular picture of
aggregation is often hard to obtain.

Molecular modelling can complement experiments by providing molecular resolution predictions on the spatial
organization of the molecules. In general, surfactant aggregation is a challenging process to simulate as it is facilitated
by slow diffusing molecules and typically occurs at very low concentrations requiring both very large system sizes and
long simulation times. For this specific ADOH surfactant system, the expected drop in diffusion coefficient occurs at
very high concentrations, making it within reach of standard all-atom simulations. Nevertheless, all-atom simulations
are computationally expensive and, even for at this high concentration regime, they may be affected by significant
finite size effects and may be limited in the range of accessible time scales.

Both of these drawbacks can be effectively addressed using coarse-grained modeling[9, 10]. In coarse-grained mod-
els, a lower resolution representation of the molecular structure with effective potentials is used to lower the overall
computational cost, thereby allowing for the study of larger and longer simulations. For soft matter systems in par-
ticular, such as ADOH, the coarse-grained methodology of hybrid particle-field molecular dynamics (hPF-MD) has
already been proved to be particularly effective. In hPF-MD the coarse-grained molecular resolution description is
combined with density-field modeling of intermolecular interactions to yield a computationally efficient modeling of
very large systems. Applications of hPF-MD have started from more conventional soft polymer mixtures and then
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FIG. 1: Molecular structure of ADOH. The transparent beads represent the coarse grained mapping used for the
hPF-MD simulations. The labels identify the three different functional groups: A = adamantane, E = TEG, T =
OH.

moved also to biological systems [11-14]. Examples from the literature include nanocomposites, nanoparticles, perco-
lation phenomena in carbon nanotubes [15-18], lamellar and nonlamellar phases of phospholipids [19-22], and more
recently polypeptides [23], and polyelectrolytes [24-28]. These applications, in particular polyelectrolytic molecules
and surfactants (Triton X-100)[29], give us sufficient ingredients for building a hPF-MD model for ADOH.

Thus, the aim of the present work is to provide a molecular understanding on the nature of the putative ADOH
aggregates reported in Ref. [8], as well as the underlying physical driving forces. Using both all-atom and hPF-MD
numerical simulations, the self-assembly properties of ADOH molecules will be studied both in CgHj2 and in water,
under the same conditions reported in the experiment. While for the former case this will provide a complementary
description with respect to the experiment, the latter case in water represents a new prediction that could eventually
lead to further experimental testing.

The rest of the paper is organized as follows. Section II outlines the all-atoms and hPF-MD methods used in the
present paper. Section III reports the results while Section III C provides a connection to the experimental findings.
Finally, Section IV includes the key messages of the present study as well as some perspectives for future work.

II. METHODS
A. All-atom simulations

NPT all-atom simulations were run using the OPLS-AA force field[30] with a time step of 2fs. The temperature
was set to 300 K and the pressure to 1 atm. The coupling was ensured by applying the v-rescale thermostat[31], with
a relaxation time of 0.1 ps, and the Parrinello-Rahman barostat[32], with coupling constant set to 3 ps and isothermal
compressibility equal to 4.5 x 107® bar~!. Long-range electrostatics was calculated with the PME method, using a
fourth order interpolation, a 0.16 nm Fourier spacing and a 1.2nm cutoff, which was the same also for the calculation
of short-range van der Waals interactions. Bond lengths were constrained using the LINCS algorithm|[33]. The water
model used was the TIP4P[34], while for CgHy2 we used the parameterization implemented in the OPLS-AA force
field[35]. The all-atom simulations were run with the GROMACS 2018.4 software[36].



B. The hPF-MD approach

In hPF-MD, molecular dynamics is used to sample the phase space of a fully-resolved molecular system composed
by Ny molecules with Hamiltonian

Nmot

M= Ho(rn) + Ws(r)]. (1)

n=1

Here Ho(ry) is the Hamiltonian of a single non-interacting molecule and W[¢(r)] is the interaction energy that depends
on the particle density ¢.
To model non-bonded attraction and repulsion between particles, we employ the following interaction energy[37]

Wielw)) = 5 [ dr Dttt (Z@ ) , @)

where ¢ is the total number density, X;; is the interaction term between species ¢ and j, ¢;(r) and ¢;(r) are the
number densities of the ¢th and jth species calculated at positions r, and k is a compressibility term. The net effect
of W is an external potential V; acting on all particles of type ¢, which is obtained by

Vi) = el Sttt + 3600w Q

The force acting on a particle of type i is obtained by gradient operation on V:
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Calculation of the potentials and of the forces acting on the particles, and used to integrate the equations of motion,
are computed with a particle mesh approach. For more details we refer to Ref[38].

C. hPF-MD simulations

Figure 1 shows the CG mapping chosen for ADOH, while in Table I we report the bead interaction matrix ;; used
in the present work. The x values for CgHi5 and ADOH were selected from chemically similar moieties of Triton
X-100 from Ref[29].

A E T C (CgHi2) W (H20)
A 0 7.8 13.25 0 33.75
E 7.8 0 4.5 7.8 1.5
T 13.25 4.5 0 13.25 0
C (CeHiz) 0 7.8 13.25 0 —
W (H20) 33.75 1.5 0 — 0

TABLE I: Interaction matrix X;;/kJmol~" used in the hPF-MD simulations.

CG simulations were run in the NVT ensemble using the OCCAM software[38]. The time step was set to 30 fs
and the temperature was kept constant at 300 K by applying the Anderson thermostat[39] with collision frequency of
7ps~!. The density field was updated every 20 time steps. In this model each CgHis molecule is represented by a
single bead, while a water bead comprises four molecules. For the simulations in C¢H;2 we added small alternating
partial charges (+0.4 and -0.4, chosen equal as the all-atom charges assigned to ether oxygens) on ADOH tail beads.
This was done in order to qualitatively mimic the weak electrostatic interactions that, from atomistic simulations of
the system with and without partial charges on the TEG segment, were found crucial in describing the clustering of
the surfactant in the apolar solvent. The electrostatic potential in this case follows the Poisson equation with a relative
dielectric constant ¢, = 5 and its computation is performed using the recently developed adapted PME-approach as
in references|24, 25]. The composition of all simulated systems is reported in Table II.



Concentration Method Solvent ADOH molecules Solvent Box size (nm) Time (ns)
molecules

1 mM hPF-MD H,O 13 182801 28 100
2 mM hPF-MD H>0O 26 182704 28 100
5 mM hPF-MD H>O 66 182412 28 100
10 mM hPF-MD H>O 132 181927 28 100
15 mM hPF-MD H>O 198 181441 28 100
50 mM hPF-MD H,O 661 178041 28 100
50 mM All-atom* H>O 661 712490 28 50
100 mM hPF-MD H>O 1322 173184 28 100
200 mM hPF-MD H>0O 2644 163469 28 100
200 mM hPF-MD CeHi2 330 13670 14 1800
200 mM All-atom* CeHio 330 11671 14 150
200 mM All-atom CgHi2 330 11079 14 450

* Model with only an effective charge in the terminal hydroxyl group of the surfactant tail.

TABLE II: Simulation setup.

ITII. RESULTS AND DISCUSSION
A. ADOH in cyclohexane

We start our analysis by presenting simulation results for ADOH in CgH;is, i.e. the same system studied experi-
mentally in Ref.[8]. In this experiment, results from SAXS and NMR suggested the onset of micelle formation, with a
CMC of approximately 100 mM, and an average radius estimated between 1.7nm and 2.5nm. As the contour length
of ADOH is ~ 1.5nm, the emerging scenario was that of nearly spherical micelles with all of the TEG tails buried
deeply inside each micelle and the adamantane hydrocarbon heads in contact with the solvent. Hence, the analogue
of a conventional spherical micelle with reversed polarity of both the surfactant and the solvent.

Spherical micelles can indeed be expected on the basis of the surfactant packing parameter [40]

Vi
Ne = )
A,

()
where V; and £; are the tail volume and length respectively, and A, is the contact area between the head group and the
tail. In the case of ADOH ¢; = 0.93 —1.25 nm, V; ~ 0.603nm?, and A, ~ 1.55nm?, as obtained by approximating the
head group to a sphere and assuming the contact area as half of the sphere surface. This leads to Ny = 0.312 —0.421,
consistent with a surfactant forming spherical or cylindrical aggregates. We remark, however, that this argument
assumes a tight packing in a straight conformation of the TEG tails into the core of the micelle, which contradicts
the characteristic high flexibility associated to the chemical structure of the tail.

We first consider all-atom simulations in order to have full control over the driving forces at the microscopic level.
The simulations were run at 200 mM, a concentration significantly higher than the putative experimental CMC at
which an increase of the SAXS intensity was observed (~ 100 mM).

Figure 2A shows a snapshot of the final configuration after 450 ns, and no clear sign of any sort of aggregation is
visible. Clearly, this may be an issue of the atomistic simulation timescale. Indeed, even in conventional surfactants
although early aggregation already occurs in the first nanoseconds of simulation, the timescales for the stabilization of
micelles usually extends to the microseconds regime, and can be most suitably probed by coarse-grained models, such
as hPF-MD. The absence of stable aggregates is however confirmed by hPF-MD, as depicted by the corresponding
snapshot of Figure 2B obtained after 1800 ns. Zooming in on the all-atom snapshot of Figure 2A, it is possible to
see a seven molecule aggregate, two dimers kept together by tail-tail interactions of the hydroxyl groups, and two free
monomers (Figure 3A). This represents a typical transient molecular cluster that is frequently observed during the
simulation, characterised by irregular shape and very short lifetime, in the 10! — 102 ps range. The absence of stable
micelles at this concentration is confirmed by the practically flat time profile of the solvent accessible surface area
(SASA) obtained from all-atom simulations (Figure 3B) indicating the absence of a core collapse. The dynamical
behavior of the system (see movie provided in SI) clearly indicates the presence of fast forming/disrupting dimers,
trimers and higher order multimers. Nonetheless, aggregation does not seem to result in the formation of a typical
core, ADOH diffusion appears dominated by the monomeric phase, while the nonpolar solvent does not show any
preferential affinity for either the head or the tail group. In particular, the first peak of the radial distribution function
(RDF) of CgH;2 against the adamantane head or the TEG tail atoms is found for both cases at ~0.6 nm, while the
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FIG. 2: Final snapshots from (A) all-atom after 450 ns and (B) hPF-MD after 1800 ns simulations of 200 mM
ADOH in CgHj2. In both cases, the box size is 14nm. Solvent molecules have been removed for clarity.
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FIG. 3: (A) A zoomed-in picture from the last frame of the all-atom simulation. (B) All-atom solvent accessible
surface area. (C) ADOH-ADOH radial distribution function g(r) from both all-atom and hPF-MD simulations. (D)
Cluster size distribution of both all-atoms and hPF-MD simulations. The inset depicts the average cluster size as a

function of time.

profile shows the characteristic modulations typical of a good solvent (Figure 4A, 4B). Moreover, the RDF plot does
not change over time, indicating the absence of progressive aggregation during the simulation. The all-atom ADOH-
ADOH center of mass RDF reported in Figure 3C shows a broad peak at ~0.75nm and tends to reach unity at a
distance of r &~ 2nm, which is an indication of the presence of uncorrelated disorder beyond this range. Also shown
in Figure 3C the RDF from hPF-MD calculation that provides a consistent picture although with a peak at a slightly
larger value indicating the tendency for the ADOH molecules to settle at this distance on a longer time scale.

The absence of well-defined aggregates for ADOH in CgHis is finally confirmed by the cluster size distribution
(Figure 3D), which exhibits an exponential decay with cluster size Nuger. The average cluster size remains constant
during the simulation around a value of ~7, indicating that a steady state has been reached. This is further corrob-
orated by hPF-MD simulations that do not show any formation of stable micelles even after 1800 ns (see Figure 2B)
and that show the same exponential decay found for the all-atom case in the aggregation number analysis.
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FIG. 4: RDF between the solvent and the adamantane head (solid black line), TEG carbons (dashed blue line) and
TEG oxygens (dotted red line) at the start and end of the simulation for both CgHi2 (A, B) and water (C, D).
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FIG. 5: (A) Snapshot of a 50 mM ADOH solution in water after 50 ns of all-atom MD simulations. Water molecules
have been removed for clarity; (B) All-atoms solvent accessible surface area as a function of time; (C) ADOH-ADOH
radial distribution function; (D) cluster size distribution. The inset shows the average cluster size as a function of
the simulation time.

B. ADOH in Water

To better understand the physics of ADOH in solution, it proves interesting to investigate the self-assembly of ADOH
in water, a case that unfortunately was not covered in the experiment of Ref.[8]. Figure 5A depicts the aggregation
state for a 50 mM concentration of ADOH in water after only 50 ns of all-atom MD simulations. Even a very short
simulation time window is sufficient to report evidence that ADOH self-assembles in regular spherical micelles, in
agreement with the predictions given by its packing parameter of 0.312 and its simple molecular structure (Figure
1). The bulky hydrophobic adamantane heads of the amphiphilic molecule promote fast aggregation to minimize the



contact with water, grouping together into a well recognizable hydrophobic core, while the hydroxyl groups of the
TEG tails stick out into the solvent. This is also well depicted by the time evolution of the RDF profile between the
ADOH moieties and the solvent (Figure 4C, 4D). In particular, at the end of the simulation, RDF profiles reach bulk
values at much longer distances than in CgHps, a consequence of the micellar collapse that screens ADOH moieites
from the solvent. There is also a clear differentiation between the RDF profiles of TEG oxygens and adamantane,
indicating the expected clear preference of the solvent for the former. The opposite behaviour is instead not occurring
in Cﬁng.

The formation of micelles at this concentration is confirmed by the analysis of the SASA that, unlike in CgHjs,
steadily decreases and levels off toward stable value already after 50 ns of MD simulations (Figure 5B). This is further
supported by the ADOH-ADOH center of mass RDF reported in Figure 5C. A very broad peak at 0.75 nm indicates
the smallest ADOH-ADOH distance in a dimer (see Figure 5A), while a slow decaying signal that asymptotically
reaches unity at 3nm, is indicative of the several additional characteristic ADOH-ADOH distances present in the
micelle, all consistent signs of the presence of stable aggregates. The cluster size distribution analysis for the micelles
(Figure 5D, here the bin size is five units) corroborates this picture with the visible presence of a multivalued dis-
tribution and a relatively large polydispersity in micelle size, which is mainly due to the relatively short simulation
times. In fact, the plot of the average cluster size as a function of time is characterised by a gradual increase in the
value, indicating that the final equilibrium state is not reached.

In any case, the all-atom results are sufficient to indicate that the simulated system is well above the critical
micelle concentration (CMC). To obtain a rough estimate of the CMC of ADOH in water, we repeated simulations of
ADOH at progressively lower concentrations using a hPF-MD approach. Thanks to the cheaper potentials and the
intrinsically accelerated dynamics, hPF-MD yields a better convergence of the aggregation state of ADOH even at
much lower concentrations than 50 mM.

The hPF-MD model was first validated against reference all-atom data, by running simulations at 50 mM. Figure
6 presents snapshots of the final configurations obtained after 100ns of hPF-MD simulations at 10 mM, 50 mM,
100 mM, and 200 mM concentrations. These snapshots provide clear indications of aggregation, also supported by the
corresponding ADOH-ADOH RDF (not shown), all exhibiting a peak localised at 0.75 nm and a similar long-range
decay (see Figure 5C). Note that the discrepancy on the height of peak and higher distribution values at short range
are a typical feature of hPF models, and must be attributed to the soft nature of the hPF potential.

From the morphological viewpoint, the size of the aggregates increases with solute concentration and at 200 mM
micelles start fusing together to form tubular structures. This is consistent with the concentration-dependent smooth
transition from spherical to tubular micelles that is commonly observed in more conventional amphiphilic surfactants,
and can be ascribed to the reaching of a critical packing of the hydrophobic moieties above which they can no longer
be accommodated into a compact spherical volume.[29, 41, 42]

The absence of significant aggregated units at 10 mM suggests that, in water, the CMC for ADOH is between
10mM and 50mM. We repeated additional hPF-MD simulations at progressively higher ADOH dilutions (1 mM,
2mM, 5mM and 15mM). By performing a linear fit on the concentration dependence of the free monomer fraction
on the surfactant concentration at smaller and higher values than the CMC, and determining their intersection point,
we produce a best estimate for the CMC =~ 13.5mM (Figure 7). Here we notice that the number of surfactant
molecules present in the lowest concentration simulation is quite small so the value of the first point in Figure 7 could
be lower if we accounted for possible finite size errors. However even changing the monomer fraction in the range
0.9-0.7, the error on the CMC is approximately only of the ~ 1-4%.

C. Reconciling with the experiment

The interpretation of the experimental results of ADOH in CgHpo in terms of formation of well defined micelles
above a CMC ~100 mM][8] and the numerical simulations that found no evidence of a stable micellization process, are
in apparent contradiction.

In fact, formation of aggregates was originally suggested on the basis of two experimental evidences: (i) a signif-
icantly lower diffusion constant for ADOH compared to that of the pure solvent, and (i) a marked change in the
SAXS intensity signal for concentrations above 100 mM.

a. Diffusion coefficient Diffusion coefficients for CgHyo, water and ADOH in the two solvents were estimated
from the slope of the mean square deviation (MSD), o2(t), calculated for all-atom simulations according to the
Einstein diffusion equation 02(t) = 6Dt + A, and compared with experimental results obtained from *H 2D-DOSY
NMR measurements. Table III reports the comparison between experimental diffusion coefficients (first column) and
the corresponding all-atoms estimates (third column), and provides evidence of a reasonably good agreement. The
results of the second column will be discussed further below. On this basis, we now argue that the drop observed in
the experiment might be due to other reasons and not related to the micellization process.
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FIG. 6: Hybrid particle field snapshots of micelles formed after 100 ns in a 28 nm cubic box at different
concentrations: (A) 10mM, (B) 50mM, (C) 100mM and (D) 200 mM.

Experimental All-atom w/o partial charges All-atom w/ partial charges
CgHyo | 1.48 Rel- T8I 1.50 + 0.02 1.38 & 0.02
ADOH| 0.47 Ref- 8 0.63 + 0.03 0.48 + 0.01
H,O | 2.30 Ref [ 3.90 £ 0.01 —
ADOH — 0.35 + 0.02 —

TABLE III: Diffusion coefficients (107° cm?/s) calculated from mean square displacement analysis of the all-atom
simulations compared with experimental results. First column, experimental results (250 mM); Second column
all-atoms simulations without partial charges; Third column all-atoms simulations with partial charges. The
concentrations are 200 mM for simulations in CgH12 and 50 mM for H5O.

b. SAXS Spectrum Figure 8 shows the experimental SAXS data for a 200 mM concentration of ADOH in CgHyo
taken from Ref. [8]. Interestingly, the line is not characterised by a marked drop of the intensity as expected for
regular spherical objects of well-defined radius. Rather, at higher scattering vector @) it decays slowly and without
showing any particular feature, a behaviour compatible with the presence of irregular objects with no clear size. This
is in very good qualitative agreement with our simulations, which show the absence of a well-defined organization of
the surfactant. The molecular RDF, in particular, is characterised by a simple profile with a short-range peak and
a fast decay (Figure 3C). Assuming a similar situation in the experiment, with an exponentially decaying RDF, the
spectral SAXS line would then have the following form:

A
- 6)

where ¢ is the Ornstein-Zernike correlation length [44]. As can be observed in Figure 8, such line shape fits well the
experimental data. For comparison, we report the predicted SAXS spectrum obtained by Fourier transform of the

1(Q)
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FIG. 8: SAXS data extracted from Ref. [8] (triangles) compared to the one calculated by a Fourier transform of the
RDF from our all-atom simulation at 200 mM ADOH in CgHj2 (circles). The red and blue lines are the
corresponding fits to Equation 6.

RDF from the all-atom simulation, as well as its fitting by Eq. 6. Like for the diffusion coefficient, the agreement with
the fit on the SAXS measurements is an indication that our computational model is well in line with the experimental
findings.

c.  Driving forces of ADOH interactions in CgH;2 The standard understanding of micelle formation is based on
the hydrophobic effect, which is an entropy driven phenomenon. By contrast, in CgHys the formation of ADOH clusters
is likely to be penalized entropically, due to the necessary confinement of TEG tails in the micellar core. Rather,
ADOH aggregates might be stabilized by the enthalpy gain associated to the electrostatic interactions occurring
among the polar TEG segments when two TEG tails rest at close distance. If so, the lower diffusion coefficient for
ADOH would be explained in terms of molecular crowding, where the pathway of a freely diffusing ADOH is hindered
by the interaction with other ADOH molecules. This would have the effect of increasing the local viscosity of the
medium, thus reducing diffusion even in the absence of a stable aggregate formation.

To verify this hypothesis, we ran additional all-atom simulations of ADOH in both water and CgH;5 where all
partial charges on the TEG segment of the amphiphile were set to zero, and replaced by an effective dipole in the
final hydroxyl group mimicking the total dipole of the tail. These artificial systems keep a coarse representation of
the polarity of the TEG tail, while at the same time removing the quadrupolar charge distributions characteristic of
the glycol ether moieties. The presence of a finite dipole on the terminal OH also ensures a correct representation of
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FIG. 9: (A) All-atom simulation of 200 mM ADOH in CgH;2 without partial charges. (B) SASA as a function of
simulation time. (C) Comparison of RDF with and without partial charges. (D) Same as in (C) for the cluster size
distribution.

the terminal H-bonding group, which was hypothesized to be crucial for ADOH aggregation in CgHys.

Simulations in water, discussed in Section III B, resulted in a faster formation of micelles compared to what was
observed for the physical model (not shown). In CgHjo the absence of quadrupolar charges on the TEG segment
reduces even further the aggregation of ADOH, resulting in a net 30% increase of its diffusion coefficient (see second
column in Table III).

The final snapshot of this system in CgHjs after 150ns is shown in Figure 9A, while the SASA is reported in
Figure 9B. Clear differences in the aggregation behaviour are evident by inspecting the RDF between ADOH molecules
(Figure 9C). In the absence of partial charges on the TEG segment, the RDF does not show a clear first-neighbour
peak. On the contrary, the RDF reaches unity immediately at » = 1 nm, which implies that each molecule is spatially
uncorrelated from one another and that the distribution of surfactant in the sample is practically uniform. The
distribution of the aggregation number (Figure 9D) shows a marked difference with the distribution more skewed
toward the monomer peak rather than larger aggregates, and an average cluster size of N,z = 4 significantly smaller
than the original model with all the partial charges (compare with the inset of Figure 3D).

Formation of hydrogen bonding between the hydroxyl groups at the tails of ADOH was also putatively indicated as
a possible driving force for ADOH aggregation in CgHi2. Figure 10 reports the number of hydrogen bonds per ADOH
molecule (N /Napomn) as a function of time, in water and CgHjo. As expected, the number of H-bonds between
ADOH in water is marginal, as the strongly hydrophilic groups prefer to interact with the solvent (see Figure 10A).
However, in CgHj2 a significant fraction of ADOH is involved in H-bonds, with a very stable average = 0.25 H-bonds
per molecule, as shown in Figure 10B. This number is anyway much smaller than the theoretical number of H-bonds
expected in the sample if clustering between ADOH molecules was determined by H-bonding. In fact, assuming that
all clustered ADOH molecules would be involved in at least a single H-bond, and considering the average cluster size
(see inset Figure 3D), one would expect a value of ~ 0.87 H-bonds per molecule, which is almost three times the one
observed. This finding confirms that while H-bonds between ADOH tails can contribute to the binding interactions,
they themselves are not strong enough to constitute a significant driving force for ADOH aggregation.

Overall, simulations of the toy system without TEG charges confirm that cohesion of ADOH in CgHj is an enthalpy-
dominated phenomenon, mainly due to quadrupole-quadrupole interactions between the TEG polar regions. This is
qualitatively different from the situation in water, where the collapse of the surfactant is determined by the entropy,
and where the same qualitative effect could be obtained by lumping all partial charges of TEG into an effective dipole
on the hydroxyl group at the end of the tail. Our simulations in CgH;2 indicate the presence of small, labile ADOH
clusters rapidly forming and dissolving in the sample. The presence of an appreciable density dishomogeneity in
the absence of true stable aggregates is indicative of a mixture at supercritical conditions, confirmed by the shape
of the SAXS profile, in qualitative agreement with those observed in other supercritical mixtures, like, for example,
water /acetonitrile[45].
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FIG. 10: Number of hydrogen bonds between ADOH molecules as a function of time in all-atom simulations in (A)
water and (B) CgHjs.

IV. CONCLUSIONS

We performed a detailed computational analysis of the self-assembly process of ADOH surfactants composed by
a hydrophobic adamantane head and a TEG tail terminating with a OH hydroxyl group. We have studied the
mechanism driving the formation of aggregates in CgHpo, by comparing their sizes, distributions, interactions, as
well as their diffusion coefficients with their experimental counterparts.[8] In addition, we have also studied the same
system in water providing a qualitative prediction for all the above quantities that could be experimentally tested.
By a detailed analysis of the results under different concentrations, we have also been able to estimate a value of
13.5mM for the CMC in water.

Our parallel analysis in water and CgH;, has allowed us to underpin the different forces driving the self-assembly
in the two solvents. In water, the conventional hydrophobic effect plays a major role in promoting the aggregation
of the hydrophobic heads that are buried inside the micelles to avoid direct contact with water molecules. In CgH1s,
an analogous lipophobic effect does not occur, and formation of well defined micelles with inverted structure was not
observed. The lack of such an effect may be attributed to concomitant factors, including the fact that TEG chains are
not as lipophobic as adamantane is hydrophobic, and that the conformational frustration of the flexible TEG moieties
is insufficiently balanced by the solvent entropy release associated to the collapse of an aggregate.

Our investigation highlighted the fact that the aggregation of ADOH into low-weight oligomers is sufficient to
explain the decrease of diffusion coefficient experimentally observed, as well as the previously reported SAXS data.
Formation of these oligomers is determined by short-range attraction of the electrostatic quadrupoles distributed over
the TEG segment. By contrast, in water these interaction are favoured by the low dielectric screening due to the
weakly polarizable solvent.

However promising, ADOH in CgH;5 appears to linger in a supercritical phase, without a clear collapse into
well defined self-assembled aggregates. Our study points to multiple possible routes that could produce significant
steps toward such a goal. Firstly, there is the need of decreasing the entropy of the free TEG chain to reduce the
entropy loss upon confinement of the polar regions in the micellar core. This could be achieved by narrowing the
accessible conformational space of the TEG chain already in the monomer, for example, by adding a second TEG
unit to the ADOH structure. Additionally, it might be possible to chemically modify the TEG part, or to use other
polymers having an even stronger polar character. While these two options aim for raising the critical temperature
of the systems, it is worth mentioning the even simpler idea of studying ADOH dissolved in low freezing point
solvents. This option should be considered in particular thinking to other thermodynamic regimes (high pressure, low
temperature) that could be found in extraterrestrial environments. Synthetic effort in this direction may soon lead
to the determination of surfactants having the ability of inverting their aggregation structure in solvents of radically
different polarity.



13
V. SUPPORTING INFORMATION

We provide a short movie for the all-atom simulation of ADOH in CgHjs in order to show the fast aggrega-
tion/disgregation process.
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