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Abstract This work is concerned with the development of
a D-BEM approach to the solution of 2D scalar wave propa-
gation problems. The time-marching process can be accom-
plished with the use of the Houbolt method, as usual, or
with the use of the Newmark method. Special attention was
devoted to the development of a procedure that allows for the
computation of the initial conditions contributions. In order
to verify the applicability of the Newmark method and also
the correctness of the expressions concerned with the compu-
tation of the initial conditions contributions, four examples
are presented and the D-BEM results are compared with the
corresponding analytical solutions.

Keywords Boundary element method ·
Scalar wave equation · Initial conditions · D-BEM

1 Introduction

The development of BEM formulations for solving time-
dependent problems is a very attractive area of research,
as demonstrated by the great number of formulations that
appeared during the last years, enriching the BEM litera-
ture concerning this matter. With the purpose of attesting the
contribution of this work, a brief discussion concerning the
BEM application to time-dependent problems is carried out

in what follows. For a very complete discussion concern-
ing dynamic analysis by the BEM, the reader is referred to
Beskos [1,2].

Bearing in mind that the integral equations can be obtained
by means of weighted residuals statement, the solution of
time-dependent problems can be accomplished with the use
of time-dependent fundamental solutions: in this case, BEM
formulations are denominated TD-BEM (TD meaning time-
domain) , e.g. Mansur [3], Dominguez [4], Carrer and Mansur
[5]. TD-BEM formulations are very elegant, from the math-
ematical point of view, and the fulfilment of the radiation
condition makes them suitable for infinite domain analyses.
Also, good representations of causality and of time response
jumps lead to very accurate results. These favorable char-
acteristics, however, are counterbalanced by the high com-
putational effort required to compute the time convolution
integrals that appear in the TD-BEM integral equations. In
order to overtake this difficulty, some works concerned with
the reduction of the computational cost, based on truncation
in the time integration, were presented by Demirel and Wang
[6], Mansur and de Lima-Silva [7], Soares and Mansur [8],
Carrer and Mansur [9].

Alternatively, one can use static fundamental solutions
instead of time-dependent fundamental solutions. In this case,
the BEM basic integral equation presents a domain inte-
gral with the kernel constituted by the fundamental solu-
tion multiplied by the second order time derivative of the
potential. In the so-called D-BEM formulations (D meaning
domain) this domain integral is kept in the BEM equations,
e.g. Carrer and Mansur [10], Hatzigeorgiou and Beskos [11].
On the other hand, by means of suitable interpolation func-
tions the domain integral can be transformed into boundary
integrals, generating the so-called DR-BEM formulations
(DR meaning double reciprocity), e.g. Kontoni and Beskos
[12], Partridge et al. [13], Agnantiaris et al. [14,15]. Although
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the treatment given to the domain integral is completely
different, one common feature of the D-BEM and DR-BEM
formulations is that the time variable does not appear explic-
itly in the integral equations. As a consequence, an adequate
approximation to the acceleration is of fundamental impor-
tance if reliable results are to be found; this requirement
was fulfilled by the Houbolt method, Houbolt [16], success-
fully employed with the BEM. Although alternative time-
marching schemes were recently proposed by Carrer and
Mansur [10], Souza et al. [17], Chien et al. [18], the search
for other approximations is a task that still deserves attention.
Among the various schemes presented in the Finite Element
Method (FEM) literature, e.g. Bathe [19], Cook et al. [20], the
Newmark family of methods can be cited. As it is well known,
the Newmark method, Newmark [21] has been widely used
in FEM formulations, presenting over the Houbolt method a
better control of the stability and accuracy, according to the
values of the parameters β and γ , see Bathe [19], Cook et
al. [20]. For this reason, it was chosen to be implemented
in the D-BEM formulation presented in this work. This is
the first matter to be discussed here. The second task, that
deserves special attention, is concerned with the solution of
problems with non-homogeneous initial conditions: a gen-
eral approach is presented to solve this kind of problems by
employing both the Houbolt and the Newmark time-march-
ing schemes.

Four examples are presented and discussed at the end of
the article, with the aim of validating the proposed formu-
lation. Additionally, it is expected that the conclusions from
this work remain valid for the DR-BEM formulation.

2 D-BEM formulation

The scalar wave equation for 2D problems over a domain �

limited by a boundary � is given by:

∂2u

∂x2 + ∂2u

∂y2 = 1

c2

∂2u

∂t2 (1)

where u(X, t), that is generically referred to as potential func-
tion, can represent the transversal displacements of a mem-
brane, c is the wave propagation velocity, t is the time and X
represents the point of coordinates (x, y).

The boundary conditions to Eq. 1, for t ≥ 0, are given
by:

u(X, t) = u(X, t) on �u

(essential or Dirichlet boundary condition)

p(X, t) = du(X, t)

dn(X)
= p(X, t) on �p

(natural or Neumann boundary condition)

(2)

Note that:

(i) in the natural boundary condition, n(X) stands for the
direction of the unit outward vector normal to the
boundary;

(ii) for general purposes � = �u ∪ �p

The initial conditions, over the domain �, are:

u(X, 0) = u0(X)

u̇(X, 0) = u̇0(X) = ∂u

∂t

∣
∣
∣
∣
t=0

.
(3)

In the BEM literature, the solution of the Poisson equation:

∂2u∗(ξ, X)

∂x2 + ∂2u∗(ξ, X)

∂y2 = −δ(X − ξ), (4)

where δ(X − ξ) is the Dirac delta function, is the so-called
fundamental solution and represents the effect, in the field
point X , of a Dirac function applied at the source point ξ .
The fundamental solution is:

u∗(ξ, X) = 1

2π
ln

(
1

r

)

, (5)

where r is the distance between the field and the source
points.

Note that although the time variable does not appear in the
fundamental solution u∗(ξ, X), it can be used in a weighted
residuals statement for finding an approximate solution to
Eq. 1, in this way generating the basic integral equation of
the D-BEM formulation. This equation can be written as
follows:

c(ξ)u(ξ, t) =
∫

�

u∗(ξ, X)p(X, t) d�(X)

−
∫

�

p∗(ξ, X)u(X, t) d�(X)

− 1

c2

∫

�

u∗(ξ, X)ü(X, t) d�(X). (6)

The coefficient c(ξ) is computed according to:

c(ξ) = α

2π
, (7)

where α is the angle depicted in Fig. 1. The function p∗(ξ ; X)

is the normal derivative of the fundamental solution:

p∗(ξ, X) = du∗(ξ, X)

dn
= du∗(ξ, X)

dr

dr

dn
. (8)

In order to solve Eq. 6, boundary and domain discret-
izations must be carried out and an approximation to the
acceleration must be adopted. In the present work, the dis-
cretization of the boundary is accomplished by linear bound-
ary elements; the discretization of the domain, by triangular
linear cells. The reader is referred to Mansur [3], and Carrer
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Fig. 1 Internal angle for the computation of c(ξ)

and Mansur [22] for further details concerning this matter.
Once the spatial discretization has been carried out, the result-
ing matrices can be assembled, thus generating an enlarged
system of equations, written below:

[

Hbb 0
Hdb 1

]{

ub
n+1

ud
n+1

}

=
[

Gbb

Gdb

] {

pb
n+1

}

− 1

c2

[

Mbb Mbd

Mdb Mdd

] {

üb
n+1

üd
n+1

}

. (9)

In Eq. 9, in order to simplify the notation, the subscript
(n +1) represents the time tn+1 = (n +1)
t , where 
t is the
selected time interval. The superscripts b and d correspond to
the boundary nodes and to the domain internal points, respec-
tively. In the sub-matrices, the first superscript corresponds
to the position of the source point and the second superscript,
to the position of the field point. The identity matrix is related
to the coefficients c(ξ) = 1 of the internal points.

From Eq. 9, the boundary unknowns are the potential at
�p and the flux at �u (as usual in BEM formulations) and
the potential at the internal points. It is important to mention
that the assemblage of such an enlarged system of equations
is necessary because the domain integral relates boundary
values to domain values. This remark is confirmed by matrix
Mbd in Eq. 9.

2.1 Time-marching scheme

The Houbolt method, Houbolt [16], is obtained by cubic
Lagrange interpolation of u = u(t) from time tn−2 = (n−2)


t to time tn+1 = (n + 1)
t . Exact differentiation with
respect to time gives the approximations to velocity and
acceleration below:

u̇n+1 = 1

6
t

[

11un+1 − 18un + 9un−1 − 2un−2
]

(10)

ün+1 = 1


t2

[

2un+1 − 5un + 4un−1 − un−2
]

(11)

After substituting (11) in (9), the time-marching scheme can
start:
[ (

(c
t)2Hbb + 2Mbb
)

2Mbd
(

(c
t)2Hdb + 2Mdb
) (

(c
t)2I + 2Mdd
)

] {

ub
n+1

ud
n+1

}

=
[

(c
t)2Gbb

(c
t)2Gdb

] {

pb
n+1

}

−
[

Mbb Mbd

Mdb Mdd

] {−5ub
n + 4ub

n−1 − ub
n−2

−5ud
n + 4ud

n−1 − ud
n−2

}

(12)

As mentioned before, the Houbolt method has been widely
used with both D-BEM and DR-BEM formulations, e.g.
Carrer and Mansur [10], Hatzigeorgiou and Beskos [11],
Kontoni and Beskos [12], Partridge et al. [13], Agnantiaris
et al. [14,15].

For the Newmark family methods, Newmark [21], the
approximations are:

u̇n+1 = γ

β
t
[un+1−un]+ (β−γ )

β
u̇n− (γ−2β)

2β

t ün

(13)

ün+1 = 1

β
t2 [un+1−un]− 1

β
t
u̇n− (1−2β)

2β
ün (14)

The stability and accuracy of the Newmark method depend
on the correct choice of the parameters β and γ . Some
remarks concerning the Newmark method are useful: (i) the
method is unstable for γ < 1/2; (ii) unconditional stability
occurs when 2β ≥ γ ≥ 1/2, (iii) taking γ > 1/2 introduces
artificial damping but reduces the accuracy of the method to
first order. If one takes β = 1/6 and γ = 1/2, expressions
(13) and (14) correspond to the linear acceleration method.
For β = 1/4 and γ = 1/2, expressions (13) and (14) cor-
respond to the average acceleration method. These obser-
vations can be found in FEM text books, e.g. Bathe [19],
Cook et al. [20]. For the D-BEM formulation developed here,
however, reliable results were obtained only with the adop-
tion of values for β and γ not usual in FEM applications.

After substituting (14) in (9), one has:
[ (

β(c
t)2Hbb + Mbb
)

Mbd
(

β(c
t)2Hdb + Mdb
) (

β(c
t)2I + Mdd
)

] {

ub
n+1

ud
n+1

}

=
[

β(c
t)2Gbb

β(c
t)2Gdb

] {

pb
n+1

}

+
[

Mbb Mbd

Mdb Mdd

]

×

⎧

⎪⎨

⎪⎩

ub
n +
t u̇b

n + (1 − 2β)

2

t2 üb

n

ud
n +
t u̇d

n + (1 − 2β)

2

t2 üd

n

⎫

⎪⎬

⎪⎭

(15)

Equations 12 and 15 can be represented in a concise
manner as:

H un+1 = G pn+1 + gn (16)
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in which the contributions of previous instants of time are
stored in vector gn .

It is important to point out that an adequate choice of the
time-step plays a fundamental role in the analysis. A dimen-
sionless variable, say β
t , was adopted in order to provide
a measure of the time-step 
t, see Mansur [3], Carrer and
Mansur [10]:

β
t = c
t

�
(17)

where � is the length of the smallest element used in the
boundary discretization.

3 Initial conditions contributions

In what follows, a description of the procedures adopted
to take into account non-homogeneous initial conditions is
given in details.

3.1 Houbolt method

In the Houbolt method, the computation of the velocity and
accelerations at time tn+1 = (n + 1)
t requires the knowl-
edge of the values of u from time tn−2 = (n − 2)
t to
time tn+1 = (n + 1)
t . At the beginning of the analysis,
i.e., at the beginning of the time-marching process, n = 0
and, consequently, the values u−2 and u−1 must be computed
appropriately in order to provide a good start of the analysis.

For the determination of u−1, initially u̇0 is computed by
employing the forward and the backward finite difference
formulae at t = 0 and by assuming that the finite difference
expressions are equal, that is:

u̇0 = u1 − u0


t
= u0 − u−1


t
(18)

Solving Eq. 18 for u1:

u1 = 2u0 − u−1 (19)

One can also assume that u̇0 can be computed by employ-
ing a central finite difference formula, which gives:

u̇0 = u1 − u−1

2
t
(20)

Solving Eq. 20 for u1:

u1 = 2
t u̇0 + u−1 (21)

From (19) and (21) one has u−1, as a function of u̇0 and
u0:

u−1 = u0 − 
t u̇0 (22)

For the determination of u−2, a similar procedure is fol-
lowed: now u̇−1 is initially computed by employing the
forward and the backward finite difference formulae at

t = −
t and assuming that the finite difference results are
equal, that is:

u̇−1 = u0 − u−1


t
= u−1 − u−2


t
(23)

Solving Eq. 23 for u−2:

u−2 = 2u−1 − u0 (24)

Substituting (22) in (24) one obtains the value of u−2 as
a function of u̇0 and u0:

u−2 = u0 − 2
t u̇0 (25)

3.2 Newmark method

At the beginning of the time-marching process one can write,
by taking n = 0 in expressions (13) and (14):

u̇1 = γ

β
t
[u1−u0] + (β − γ )

β
u̇0− (γ−2β)

2β

t ü0 (26)

ü1 = 1

β
t2 [u1−u0] − 1

β
t
u̇0− (1−2β)

2β
ü0 (27)

In expressions (26) and (27), ü0 is the only unknown; in order
to determine this value, one can assume that:

ü0 = u̇1 − u̇0


t
(28)

After solving (28) for u̇1 and substituting the resulting expres-
sion in (26), one has:

ü0 = 2


t2 [u1 − u0] − 2


t
u̇0 (29)

The substitution of (29) in (27) produces the following
expression:

ü1 = 2


t2 [u1 − u0] − 2


t
u̇0 (30)

Bearing Eq. 30 in mind, Eq. 15 at the first time step (n = 0)
can be particularized and written according to:
[(

(c
t)2Hbb + 2Mbb
)

2Mbd

(

(c
t)2Hdb + 2Mdb
) (

(c
t)2I + 2Mdd
)

] {

ub
1

ud
1

}

=
[

(c
t)2Gbb

(c
t)2Gdb

]
{

pb
1

}

+
[

2Mbb 2Mbd

2Mdb 2Mdd

] {
ub

0 + 
t u̇b
0

ud
0 + 
t u̇d

0

}

(31)

Before proceeding to the next section, a discussion con-
cerning the procedures presented here, summarized by
Eqs. 22, 25 and 29, seems to be necessary and can start with
the following question: why a classical starting procedure,
such as the central difference method, was not employed, as
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suggested by Bathe [19]? To answer this question, and also
justify the validity of the proposed procedures, it is impor-
tant to recall how the central difference method is applied as
a starting procedure. In this manner, if the central difference
method is adopted, it is assumed that:

ün = un+1 − 2un + un−1


t2 (32)

and

u̇n = un+1 − un−1

2
t
(33)

Particularizing Eqs. (32) and (33) for n = 0, one can arrive
at the expression for u−1:

u−1 = u0 − 
t u̇0 + 
t2

2
ü0 (34)

Note that ü0 can be computed from Eq. 9, rewritten concisely
below for t = 0:

Hu0 = Gp0 − Mü0 (35)

It is important to note that the values of p0, in Eq. 35,
are directly computed from the analytical expressions of the
initial condition u0. Finally, ü0 is given by:

ü0 = M−1[Gp0 − Hu0] (36)

Here appears the main difficulty for employing this start-
ing procedure with the D-BEM: the use of double nodes in
the boundary discretization (as is done in Examples 1 and 2)
or in the domain (as will be explained next, in Example 4)
makes M a singular matrix and, consequently, ü0 can not be
computed from Eq. 36. If the analysis produces a non-singu-
lar matrix M, as occurs in the third example, Eq. 36 can be
used.

For the use of the Houbolt method it becomes necessary
to compute u1 and u2; from Eq. 32 one has:

u1 = 2u0 − u−1 + 
t2ü0 (37)

The computation of u2 with the aid of Eq. 32 (by
taking n = 1) requires the knowledge of ü1 and, conse-
quently, the knowledge of p1. This observation becomes
clearer by writing an equation equivalent to Eq. 36:

ü1 = M−1[Gp1 − Hu1] (38)

As p1 is no longer determined directly, with the Houbolt
method this starting procedure fails.

On the other hand, if the Newmark method is chosen, see
Eq. 14, one can write:

ü1 = 1

β
t2 [u1−u0] − 1

β
t
u̇0− (1−2β)

2β
ü0 (39)

and Eq. 15 can be directly used for n ≥ 0. A comparison
between the results provided by the central difference starting

procedure and the procedure developed here for the Newmark
method is carried out in the third example of the next section.

4 Numerical results

The main concern of the first example and of the first analysis
of the second example is to verify the applicability of the
Newmark method, Newmark [21], in the D-BEM formula-
tion; in other words, to determine a possible range of variation
of the parameters β and γ . The choice of an adequate value
of the parameter β
t is also discussed. The BEM results are
always compared with the corresponding analytical solution,
computed following the procedures described by Stephenson
[23] and Kreyszig [24]. In order to simplify the notation, anal-
yses carried out by employing the Houbolt or the Newmark
methods are referred to as Houbolt or Newmark analyses.

4.1 One-dimensional bar with a time variable boundary
condition

This example consists of a one-dimensional bar defined over
0 ≤ x ≤ a, fixed at x = 0 and subjected to a time variable
sinusoidal boundary condition at x = a, i.e.

u(0, t) = 0 (40)

u(a, t) = U sin λt (41)

By assuming homogeneous initial conditions, the analyti-
cal solution to this problem is given by, see Stephenson [23]:

u(x, t) = U

[

x

a
sin λt +

∞
∑

r=1

wr (t) sin
(rπx

a

)
]

(42)

where:

wr (t)= 2λ

(φ2−λ2)

(−1)r

rπ
[φ sin φt−λ sin λt] with φ= crπ

a
(43)

In the analysis presented here,λ = π
24 . A particular feature

of this analysis is to be mentioned: as the essential bound-
ary condition at x = a is known (see expression (41)), the
expression of the acceleration is easily computed and sub-
stitutes the approximations given by (11) and (14) in the
systems of Eqs. 12 and 15. The contribution of the known
acceleration term is then added directly to the independent
vector gn in Eq. 16.

Treated as a 2D problem, the original bar is represented
by a rectangular domain of length equal to a and height equal
to a/2. The discretization, with double nodes at the corners,
employed 48 boundary elements and 256 internal cells, see
Fig. 2.

For the Houbolt analysis, best results were achieved for
β
t = 1/3. The results for the potential at point C(a/2, a/4)
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Fig. 2 One-dimensional bar: boundary and domain discretization

0.0 2.0 4.0 6.0 8.0 10.0 ct/a
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

u/U

analytical
D-BEM: Houbolt method

Fig. 3 One-dimensional bar with sinusoidal boundary condition:
Houbolt analysis, potential at C(a/2, a/4)

are presented in Fig. 3; the results for the flux at node
B(0, a/4) are presented in Fig. 4.

Bearing in mind that the use of the Newmark method
requires the introduction of damping, Carrer and Mansur
[10], several analyses were carried out before achieving use-
ful values of the parameters β and γ : for practical purposes,
the best choice falls on β = 0.30 and on γ ≥ 0.52. This choice
was conditioned by the accuracy in the results related to
the flux at node B(0, a/4); here γ = 0.55 was adopted. Best
results were achieved forβ
t = 2/3. The results for the poten-
tial at point C(a/2, a/4) are presented in Fig. 5; the results
for the flux at node B(0, a/4) are presented in Fig. 6. As
before, good agreement is observed between D-BEM and
analytical results, thus confirming the usefulness of the Hou-
bolt method and demonstrating that the Newmark method is
suitable for D-BEM analyses.

0.0 2.0 4.0 6.0 8.0 10.0 ct/a
-0.4

-0.2

0.0

0.2

0.4

p/U

analytical
D-BEM: Houbolt method

Fig. 4 One-dimensional bar with sinusoidal boundary condition:
Houbolt analysis, flux at B(0, a/4)

0.0 2.0 4.0 6.0 8.0 10.0 ct/a
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

u/U

analytical
D-BEM: Newmark method

Fig. 5 One-dimensional bar with sinusoidal boundary condition:
Newmark analysis, potential at C(a/2, a/4)

4.2 One-dimensional rod under a Heaviside-type forcing
function and under initial conditions prescribed over
the entire domain

This is the classical example of a one-dimensional rod fixed at
one side (x = 0) and free at the other (x = a). Three analyses
were performed by adopting the same mesh of the previous
example (see Fig. 2): in the first analysis a Heaviside-type

6



0.0 2.0 4.0 6.0 8.0 10.0 ct/a
-0.4

-0.2

0.0

0.2

0.4

p/U

analytical
D-BEM: Newmark method

Fig. 6 One-dimensional bar with sinusoidal boundary condition:
Newmark analysis, flux at B(0, a/4)

forcing function p(a) = P H(t −0), applied instantaneously
at t = 0 and kept constant in time, is imposed to the free side.
The second and the third analyses are carried out by assum-
ing, respectively, initial conditions of the type: u0(x) = U x ,
0 ≤ x ≤ a, and u̇0(x) = V , 0 ≤ x ≤ a.

For the general case, the analytical solution is given by,
see Stephenson [23]:

u(x, t) = Px+ 8a

π2

∞
∑

n=1

[

(P−U )(−1)n cos

(
(2n−1)πct

2a

)

+ V

c
sin

(
(2n − 1)πct

2a

)] sin
(

(2n−1)πx
2a

)

(2n − 1)2 (44)

Expression (44) can be particularized to each one of the
above mentioned analysis by taking the constants P , or U ,
or V null.

Houbolt results for the potential at node A(a, a/4)

are shown in Figs. 7, 8 and 9. Results for the flux at node
B(0, a/4) are shown in Figs. 10, 11 and 12. The time inter-
val was selected by taking β
t = 1/3.

Newmark results were obtained by choosing β = 0.30
and γ = 0.60, as more damping was required for obtaining
accurate results for the flux. Results for the potential at node
A(a, a/4) are shown in Figs. 13, 14 and 15. Results for the
flux at node B(0, a/4) are shown in Figs. 16, 17 and 18. Here,
the time interval was selected by taking β
t = 2/3.

The same conclusions of the previous example are valid,
i.e., the good agreement between the analytical and the
D-BEM results demonstrates that the Newmark method is
suitable for D-BEM analyses, depending on the correct
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D-BEM: Houbolt method

Fig. 7 One-dimensional bar under a Heaviside-type forcing function:
Houbolt analysis, potential at A(a, a/4)
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Fig. 8 One-dimensional bar under initial displacement field over the
entire domain: Houbolt analysis, potential at A(a, a/4)

choice of the parameters β and γ . Although the results in
Figs. 13, 14 and 15 present more damping than those in
Figs. 7, 8 and 9, the presence of damping proved to be pos-
itive, leading to the reliable results in Figs. 16, 17 and 18.
Further, the second and third analyses show that expressions
(22), (25) and (29) are capable of taking into account the
contributions of the initial conditions.
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Fig. 9 One-dimensional bar under initial velocity field over the entire
domain: Houbolt analysis, potential at A(a, a/4)
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Fig. 10 One-dimensional bar under a Heaviside-type forcing function:
Houbolt analysis, flux at B(0, a/4)

4.3 Square membrane under prescribed initial displacement
over the entire domain

This example deals with a square membrane subjected to the
initial conditions over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ a,
see Fig. 19:

u0(x, y) = U x(x − a)y(y − a) (45)

u̇0(x, y) = 0 (46)
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D-BEM: Houbolt method

Fig. 11 One-dimensional bar under initial displacement field over the
entire domain: Houbolt analysis, flux at B(0, a/4)
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Fig. 12 One-dimensional bar under initial velocity field over the entire
domain: Houbolt analysis, flux at B(0, a/4)

The general analytical solution to this problem, for a
rectangular membrane with dimensions a and b, according
to Kreyszig [24], is:

u(x, y, t) = 64Ua2b2

π6

∞
∑

m=1

∞
∑

n=1

1

m3n3 sin
(mπx

a

)

× sin
(nπy

b

)

cos(λmnπct) (47)
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Fig. 13 One-dimensional bar under a Heaviside-type forcing function:
Newmark analysis, potential at A(a, a/4)
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Fig. 14 One-dimensional bar under initial displacement field over the
entire domain: Newmark analysis, potential at A(a, a/4)

where:

λmn =
√

m2

a2 + n2

b2 (48)

In this analysis, the boundary discretization employed 80
elements, without double nodes at the corners due to the sym-
metry of the problem, and the square domain, 800 cells, see
Fig. 20.
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Fig. 15 One-dimensional bar under initial velocity field over the entire
domain: Newmark analysis, potential at A(a, a/4)
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Fig. 16 One-dimensional bar under a Heaviside-type forcing function:
Newmark analysis, flux at B(0, a/4)

The results corresponding to the displacement at point
A(a/2, a/2) and to the support reaction at node B(a, a/2),
from the Houbolt analyses, are shown in Figs. 21 and 22,
respectively.

Newmark analyses were carried out by adopting β = 0.30
and γ = 0.52 and the results are shown in Figs. 23 and 24.

In this example the presence of a large amount of damp-
ing is not so important as it was in the previous ones; for this
reason, a smaller value to the γ parameter was adopted.
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Fig. 17 One-dimensional bar under initial displacement field over the
entire domain: Newmark analysis, flux at B(0, a/4)
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Fig. 18 One-dimensional bar under initial velocity field over the entire
domain: Newmark analysis, flux at B(0, a/4)

Houbolt and Newmark analyses were carried out with the
same time interval, computed from β
t = 3/10.

The good agreement between D-BEM and analytical
results, depicted in Figs. 21, 22, 23 and 24, was already
expected, as in this example time jumps do not appear.

Before finishing this example, a comparison between the
results provided by the Newmark method, as proposed in
this work, with the results provided by the central differ-
ence method (as a starting method), is presented in Fig. 25,

Fig. 19 Square membrane under initial displacement field over the
entire domain

Fig. 20 Square membrane: boundary and domain discretization

for the displacement at point A(a/2, a/2), and in Fig. 26,
for the support reaction at node B(a, a/2). In this compar-
ison, the time interval was adopted by taking β
t = 3/10.
The good agreement observed between both the numerical
results attests the applicability of the proposed formulation
to D-BEM analyses.

4.4 Square membrane under prescribed initial velocity
over part of the domain

The square membrane depicted in Fig. 27, with an initial
velocity field u̇0(x, y) = V prescribed over the sub-domain
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Fig. 21 Square membrane under initial displacement field over the
entire domain: displacement at point A(a/2, a/2): Houbolt analysis
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Fig. 22 Square membrane under initial displacement field over the
entire domain: support reaction at node B(a, a/2): Houbolt analysis

�0 and with zero displacements prescribed all over the
domain, is analysed in this example.

The analytical solution to this problem is given by, see
Kreyszig [24]:

u(x, y, t) = 4V

cπ3

∞
∑

m=1

∞
∑

n=1

1

mnλmn
sin

(mπx

a

)

× sin
(nπy

a

)

Gmn (49)

0.0 4.0 8.0 12.0 16.0 ct/a
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u/U
analytical
D-BEM: Newmark method

Fig. 23 Square membrane under initial displacement field over the
entire domain: displacement at point A(a/2, a/2): Newmark analysis
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Fig. 24 Square membrane under initial displacement field over the
entire domain: support reaction at node B(a, a/2): Newmark analysis

where:

λmn =
√

m2 + n2

a
(50)

and

Gmn =
(

cos

(
3nπ

5

)

− cos

(
2nπ

5

))

×
(

cos

(
3mπ

5

)

− cos

(
2mπ

5

))

sin(λmnπct) (51)
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Fig. 25 Square membrane under initial displacement field over the
entire domain: displacement at point A(a/2, a/2): Newmark analysis
and central difference method
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Fig. 26 Square membrane under initial displacement field over the
entire domain: support reaction at node B(a, a/2): Newmark analysis
and central difference method

This example was analysed previously with the use of
the TD-BEM formulation, e.g. Mansur [3] and Carrer and
Mansur [9] and, more recently, with the use of a BEM for-
mulation based on the convolution quadrature method, see
Abreu et al. [25]. In the D-BEM formulation presented here,
care should be taken when considering the initial conditions
contributions. Because linear interpolation is adopted for the
initial conditions in the internal cells, the use of double-nodes

y

x

a/5

a/5

a

a Ωο

u=0

u=0

u=0 u=0

Fig. 27 Square membrane under prescribed initial velocity over part
of the domain

in the boundary of �0 became necessary in order to avoid the
spreading of the initial conditions to the cells in the neigh-
bouring of �0. Aiming at providing a good representation
of the jumps in the support reaction response, a more refined
mesh, constituted of 160 elements and 3,200 cells, not shown
here, was employed. The results of the Houbolt analyses,
corresponding to the displacement at point A(a/2, a/2) and
to the support reaction at node B(a, a/2), are depicted in
Figs. 28 and 29, respectively. These results were obtained by
adopting β
t = 3/10. The Newmark analyses was carried
out with β = 0.30, γ = 0.52 and β
t = 3/5; the results are
depicted in Figs. 30 and 31. The D-BEM responses are in
good agreement with the analytical ones, although it must be
pointed out that the TD-BEM formulation provides a better
representation of the jumps in the support reaction response.
Nevertheless, the good responses furnished by the D-BEM
formulation demonstrate its applicability to the solution of
this kind of problems.

5 Conclusions

The D-BEM formulation is a very promising approach and,
consequently, it is expected that some research work con-
cerning its development will be done in the next years. With
the purpose of contributing with the development of the
D-BEM formulation, this work in concerned with two sub-
jects: the first one is the search for alternative methods to
perform the march in time, as the Houbolt method has been,
during the last years, the only one successfully employed
in the D-BEM formulation. For this reason, the Newmark
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Fig. 28 Square membrane under prescribed initial velocity over part
of the domain: displacement at point A(a/2, a/2): Houbolt analysis
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Fig. 29 Square membrane under prescribed initial velocity over part
of the domain: support reaction at node B(a, a/2): Houbolt analysis

method was adopted to carry out this discussion and, on the
basis of the examples presented here, it seems that this goal
was achieved, as stable and accurate results were found. The
second subject is concerned with the solution of problems
with non-homogeneous initial conditions; in other words, it
is concerned with finding general expressions to the terms
u−2 and u−1, in the Houbolt method, and to the term ü0,
in the Newmark method. The results presented here demon-
strate the validity of the expressions found and encourage the
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Fig. 30 Square membrane under prescribed initial velocity over part
of the domain: displacement at point A(a/2, a/2): Newmark analysis
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Fig. 31 Square membrane under prescribed initial velocity over part
of the domain: support reaction at node B(a, a/2): Newmark analysis

extension of the present work to elastodynamics, as well as
to the DR-BEM formulation and also to the Finite Element
Method.
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