37 research outputs found

    Structure and dynamics of the Shapley Supercluster

    Get PDF
    We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v~ 14500 km/s) extends further than previous estimates, filling the whole extent of our survey region of 12~degrees by 30~degrees on the sky (30 x 75~h-1 Mpc). There is also a connecting structure associated with the slightly nearer Abell~3571 cluster complex (v~ 12000km/s. These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at V= 15000 km/s near R.A.= 13h. They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km/s < cz < 18000 km/s), we found redshift-space overdensities with b\_j < 17.5 of ~5.4 over the 225 square degree central region and ~3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.Comment: Accepted for publication in Astronomy and Astrophysic

    Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease.

    Get PDF
    Trypanosoma cruzi, the etiological agent of Chagas disease, is highly genetically diverse. Numerous lines of evidence point to the existence of six stable genetic lineages or DTUs: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe. Molecular dating suggests that T. cruzi is likely to have been an endemic infection of neotropical mammalian fauna for many millions of years. Here we have applied a panel of 49 polymorphic microsatellite markers developed from the online T. cruzi genome to document genetic diversity among 53 isolates belonging to TcIIc, a lineage so far recorded almost exclusively in silvatic transmission cycles but increasingly a potential source of human infection. These data are complemented by parallel analysis of sequence variation in a fragment of the glucose-6-phosphate isomerase gene. New isolates confirm that TcIIc is associated with terrestrial transmission cycles and armadillo reservoir hosts, and demonstrate that TcIIc is far more widespread than previously thought, with a distribution at least from Western Venezuela to the Argentine Chaco. We show that TcIIc is truly a discrete T. cruzi lineage, that it could have an ancient origin and that diversity occurs within the terrestrial niche independently of the host species. We also show that spatial structure among TcIIc isolates from its principal host, the armadillo Dasypus novemcinctus, is greater than that among TcI from Didelphis spp. opossums and link this observation to differences in ecology of their respective niches. Homozygosity in TcIIc populations and some linkage indices indicate the possibility of recombination but cannot yet be effectively discriminated from a high genome-wide frequency of gene conversion. Finally, we suggest that the derived TcIIc population genetic data have a vital role in determining the origin of the epidemiologically important hybrid lineages TcIId and TcIIe

    Genome-Scale Multilocus Microsatellite Typing of Trypanosoma cruzi Discrete Typing Unit I Reveals Phylogeographic Structure and Specific Genotypes Linked to Human Infection

    Get PDF
    Trypanosoma cruzi is the most important parasitic infection in Latin America and is also genetically highly diverse, with at least six discrete typing units (DTUs) reported: Tc I, IIa, IIb, IIc, IId, and IIe. However, the current six-genotype classification is likely to be a poor reflection of the total genetic diversity present in this undeniably ancient parasite. To determine whether epidemiologically important information is “hidden” at the sub-DTU level, we developed a 48-marker panel of polymorphic microsatellite loci to investigate population structure among 135 samples from across the geographic distribution of TcI. This DTU is the major cause of resurgent human disease in northern South America but also occurs in silvatic triatomine vectors and mammalian reservoir hosts throughout the continent. Based on a total dataset of 12,329 alleles, we demonstrate that silvatic TcI populations are extraordinarily genetically diverse, show spatial structuring on a continental scale, and have undergone recent biogeographic expansion into the southern United States of America. Conversely, the majority of human strains sampled are restricted to two distinct groups characterised by a considerable reduction in genetic diversity with respect to isolates from silvatic sources. In Venezuela, most human isolates showed little identity with known local silvatic strains, despite frequent invasion of the domestic setting by infected adult vectors. Multilocus linkage indices indicate predominantly clonal parasite propagation among all populations. However, excess homozygosity among silvatic strains and raised heterozygosity among domestic populations suggest that some level of genetic recombination cannot be ruled out. The epidemiological significance of these findings is discussed

    Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Get PDF
    BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS/SIGNIFICANCE: These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages

    Research Priorities for Neglected Infectious Diseases in Latin America and the Caribbean Region

    Get PDF
    Dujardin, J. C. et al. 5 p.-1 tab.Global priorities for research in neglected infectious diseases (NIDs) can be assessed in different ways, but it is important to realize that regional priorities may significantly differ one from another. The region of Latin America and the Caribbean (LAC) is—along with Africa and Asia—more affected by NIDs than other regions of the world. Some of the Latin American NIDs are common to other continents, while others are very specific or disproportionately affect the Latin American region [1– 3] (Table 1). Because of its huge ecological diversity, ongoing environmental changes, and massive migrations, LAC is also a catalyst for the (re-)emergence and spreading of NIDs, both inside and outside the subcontinent. Following a colloquium on NIDs in LAC held in Lima, Peru, between 12 and 14 November 2009, a thematic workshop was organized with the support of the European Commission (EC). It involved 29 scientists (16 from the Americas, two from the Democratic Republic of Congo and India, respectively, and nine from Europe) working on different NIDs and representing several research areas from basic to applied. This report summarizes the consensus comments of the expert group after oral and written consultation. It is envisaged that this document should stimulate a debate within the scientific community and serve as a recommendation for future actions by international or regional funding agencies in the area of NIDs in LACThis work was supported by the Directorate-General for Development Cooperation of the Belgian Government (framework agreement 03, project 95502) and the European CommissionPeer reviewe

    Venezuela's humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region.

    Get PDF
    In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Analysis of molecular diversity of the Trypanosoma cruzi trypomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology.

    No full text
    Chagas disease, marked by life-long chronic infection with Trypanosoma cruzi, remains a major parasitic disease in Latin America. Genetically heterogeneous, T. cruzi is divided into six discrete typing units (DTUs), most recently grouped as TcI-VI. The trypomastigote small surface antigen (TSSA) of T. cruzi has been described as the only known serological marker to identify infection by TcII-VI, as distinct from TcI. Here, by comparative analysis of a cohort of 25 reference strains representing all the known DTUs, we show that TSSA intra-specific diversity is greater than previously reported. Furthermore, TcIII and IV TSSA PCR products are, contrary to expectation, both digested by PvuII, revealing a more nuanced genotyping pattern. Amino acid sequence diversity reveals that the TSSA epitope considered to be serologically characteristic of TcII-VI is restricted to TcII, V and VI, but not of III or IV, and that the diagnostic peptide described as TcI-specific shares key features with TcIII and IV. Notably, TSSA sequences inferred greater phylogenetic affinities of TcIII and IV to TcI than to TcII, V or VI. A high ratio of non-synonymous to synonymous nucleotide substitutions (omega=1.233) indicates that the TSSA gene has been under positive selection pressure. The demonstration of lineage-specific epitopes within TcII-VI has implications for sero-epidemiological studies of Chagas disease based on this antigen

    North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype.

    Get PDF
    BACKGROUND: Trypanosoma cruzi, the agent of Chagas disease, is currently recognized as a complex of six lineages or Discrete Typing Units (DTU): TcI-TcVI. Recent studies have identified a divergent group within TcI - TcI(DOM). TcI(DOM). is associated with a significant proportion of human TcI infections in South America, largely absent from local wild mammals and vectors, yet closely related to sylvatic strains in North/Central America. Our aim was to examine hypotheses describing the origin of the TcI(DOM) genotype. We propose two possible scenarios: an emergence of TcI(DOM) in northern South America as a sister group of North American strain progenitors and dispersal among domestic transmission cycles, or an origin in North America, prior to dispersal back into South American domestic cycles. To provide further insight we undertook high resolution nuclear and mitochondrial genotyping of multiple Central American strains (from areas of MĂ©xico and Guatemala) and included them in an analysis with other published data. FINDINGS: Mitochondrial sequence and nuclear microsatellite data revealed a cline in genetic diversity across isolates grouped into three populations: South America, North/Central America and TcI(DOM). As such, greatest diversity was observed in South America (A(r) = 4.851, π = 0.00712) and lowest in TcI(DOM) (Ar = 1.813, π = 0.00071). Nuclear genetic clustering (genetic distance based) analyses suggest that TcI(DOM) is nested within the North/Central American clade. CONCLUSIONS: Declining genetic diversity across the populations, and corresponding hierarchical clustering suggest that emergence of this important human genotype most likely occurred in North/Central America before moving southwards. These data are consistent with early patterns of human dispersal into South America
    corecore