377 research outputs found
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity
The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp
scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx}
orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized
description of the in-plane electron correlations the superconducting order
parameter is found to be a orbital-singlet spin-triplet with two spatial
components. The spatial anisotropy is 7%. The different components of the order
parameter give rise to two-dimensional gapless fluctuations. The phase
transition is of third order. The temperature dependence of the pair density,
specific heat, NQR, Knight shift, and susceptibility are in agreement with
experimental results.Comment: 20 pages REVTEX, 3 figure
Cortical complexity in world trade center responders with chronic posttraumatic stress disorder
Approximately 23% of World Trade Center (WTC) responders are experiencing chronic posttraumatic stress disorder (PTSD) associated with their exposures at the WTC following the terrorist attacks of 9/11/2001, which has been demonstrated to be a risk factor for cognitive impairment raising concerns regarding their brain health. Cortical complexity, as measured by analyzing Fractal Dimension (FD) from T1 MRI brain images, has been reported to be reduced in a variety of psychiatric and neurological conditions. In this report, we hypothesized that FD would be also reduced in a case-control sample of 99 WTC responders as a result of WTC-related PTSD. The results of our surface-based morphometry cluster analysis found alterations in vertex clusters of complexity in WTC responders with PTSD, with marked reductions in regions within the frontal, parietal, and temporal cortices, in addition to whole-brain absolute bilateral and unilateral complexity. Furthermore, region of interest analysis identified that the magnitude of changes in regional FD severity was associated with increased PTSD symptoms (reexperiencing, avoidance, hyperarousal, negative affect) severity. This study confirms prior findings on FD and psychiatric disorders and extends our understanding of FD associations with posttraumatic symptom severity. The complex and traumatic experiences that led to WTC-related PTSD were associated with reductions in cortical complexity. Future work is needed to determine whether reduced cortical complexity arose prior to, or concurrently with, onset of PTSD
(An)Isotropic models in scalar and scalar-tensor cosmologies
We study how the constants and may vary in different
theoretical models (general relativity with a perfect fluid, scalar
cosmological models (\textquotedblleft quintessence\textquotedblright) with and
without interacting scalar and matter fields and a scalar-tensor model with a
dynamical ) in order to explain some observational results. We apply
the program outlined in section II to study three different geometries which
generalize the FRW ones, which are Bianchi \textrm{V}, \textrm{VII} and
\textrm{IX}, under the self-similarity hypothesis. We put special emphasis on
calculating exact power-law solutions which allow us to compare the different
models. In all the studied cases we arrive to the conclusion that the solutions
are isotropic and noninflationary while the cosmological constant behaves as a
positive decreasing time function (in agreement with the current observations)
and the gravitational constant behaves as a growing time function
Direct evidence of nonstationary collisionless shocks in space plasmas
Collisionless shocks are ubiquitous throughout the universe: around stars, supernova remnants, active galactic
nuclei, binary systems, comets, and planets. Key information is carried by electromagnetic emissions from particles
accelerated by high Mach number collisionless shocks. These shocks are intrinsically nonstationary, and the
characteristic physical scales responsible for particle acceleration remain unknown. Quantifying these scales is crucial, as it affects the fundamental process of redistributing upstream plasma kinetic energy into other degrees of
freedom—particularly electron thermalization. Direct in situ measurements of nonstationary shock dynamics have
not been reported. Thus, the model that best describes this process has remained unknown. Here, we present
direct evidence demonstrating that the transition to nonstationarity is associated with electron-scale field
structures inside the shock ramp
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Bianchi {VI} in Scalar and Scalar-Tensor Cosmologies
We study several cosmological models with Bianchi \textrm{VI}
symmetries under the self-similar approach. In order to study how the
\textquotedblleft constants\textquotedblright\ and may vary, we
propose three scenarios where such constants are considered as time functions.
The first model is a perfect fluid. We find that the behavior of and
are related. If behaves as a growing time function then
is a positive decreasing time function but if is decreasing then
is negative. For this model we have found a new solution. The second model is a
scalar field, where in a phenomenological way, we consider a modification of
the Klein-Gordon equation in order to take into account the variation of .
Our third scenario is a scalar-tensor model. We find three solutions for this
models where is growing, constant or decreasing and is a positive
decreasing function or vanishes. We put special emphasis on calculating the
curvature invariants in order to see if the solutions isotropize.Comment: Typos corrected. References added, minor corrections. arXiv admin
note: text overlap with arXiv:0905.247
- …