51 research outputs found

    microRNAs and the evolution of complex multicellularity:Identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus

    Get PDF
    There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria to identify novel microRNA loci. A large set of 63 microRNA families was identified in the brown alga Ectocarpus based on mapping of RNA-seq data and nine microRNAs were confirmed by northern blotting. The Ectocarpus microRNAs are highly diverse at the sequence level with few multi-gene families, and do not tend to occur in clusters but exhibit some highly conserved structural features such as the presence of a uracil at the first residue. No homologues of Ectocarpus microRNAs were found in other stramenopile genomes indicating that they emerged late in stramenopile evolution and are perhaps specific to the brown algae. The large number of microRNA loci in Ectocarpus is consistent with the developmental complexity of many brown algal species and supports a proposed link between the emergence and expansion of microRNA regulatory systems and the evolution of complex multicellularity

    Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness

    Get PDF
    Quantitative trait loci (QTL) for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meat-type chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires and 38 F1 dams were recorded at 8 weeks of age for live body, abdominal fat and breast muscle weights. One hundred-twenty nine microsatellite markers, evenly located throughout the genome and heterozygous for most of the F1 sires, were used for genotyping the F2 birds. In each sire family, those offspring exhibiting the most extreme values for each trait were genotyped. Multipoint QTL analyses using maximum likelihood methods were performed for abdominal fat and breast muscle weights, which were corrected for the effects of 8-week body weight, dam and hatching group. Isolated markers were assessed by analyses of variance. Two significant QTL were identified on chromosomes 1 and 5 with effects of about one within-family residual standard deviation. One breast muscle QTL was identified on GGA1 with an effect of 2.0 within-family residual standard deviation

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Transcriptional profiling of liver in riboflavin-deficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering

    No full text
    BACKGROUND: A strain of Leghorn chickens (rd/rd), unable to produce a functional riboflavin-binding protein, lays riboflavin-deficient eggs, in which all embryos suddenly die at mid-incubation (days 13-15). This malady, caused by riboflavin deficiency, leads to excessive lipid accumulation in liver, impaired β-oxidation of lipid, and severe hypoglycemia prior to death. We have used high-density chicken microarrays for time-course transcriptional scans of liver in chicken embryos between days 9-15 during this riboflavin-deficiency-induced metabolic catastrophe. For comparison, half of rd/rd embryos (n = 16) were rescued from this calamity by injection of riboflavin just prior to incubation of fertile eggs from rd/rd hens. RESULTS: No significant differences were found between hepatic transcriptomes of riboflavin-deficient and riboflavin-rescued embryos at the first two ages (days 9 and 11). Overall, we found a 3.2-fold increase in the number of differentially expressed hepatic genes between day 13 (231 genes) and day 15 (734 genes). Higher expression of genes encoding the chicken flavoproteome was more evident in rescued- (15 genes) than in deficient-embryos (4 genes) at day 15. Diminished activity of flavin-dependent enzymes in riboflavin-deficient embryos blocks catabolism of yolk lipids, which normally serves as the predominant source of energy required for embryonic development. CONCLUSIONS: Riboflavin deficiency in mid-stage embryos leads to reduced expression of numerous genes controlling critical functions, including β-oxidation of lipids, blood coagulation and feathering. Surprisingly, reduced expression of feather keratin 1 was found in liver of riboflavin-deficient embryos at e15, which could be related to their delayed feathering and sparse clubbed down. A large number of genes are expressed at higher levels in liver of riboflavin-deficient embryos; these up-regulated genes control lipid storage/transport, gluconeogenesis, ketogenesis, protein catabolism/ubiquitination and cell death

    Additional file 4: of Transcriptional profiling of liver in riboflavin-deficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering

    Get PDF
    Lists of “Analysis Ready” DE genes (AR-DE genes) assigned by IPA to “Canonical Pathways”. A Microsoft Excel file containing a five worksheets of the top “Canonical Pathways” identified by IPA in riboflavin-rescued and riboflavin deficient chick embryos on embryonic day 15 (e15). Five major canonical pathways identified by IPA among DE genes on embryonic day 15 (e15) were: “EIF2 Signaling, Acute-phase Signaling, LXR-RXR Activation, FXR-RXR Activation, Intrinsic Prothrombin Activation”, and “Blood Clotting” in the “Biological Function Category” of IPA. Each worksheet provides the gene symbol, Entrez gene name, gene expression as log2 ratio (Rf+/Rf-), and Ref-Seq protein ID or Entrez gene ID. (XLSX 27 kb

    Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus)

    Get PDF
    Abstract Background Although hatching is perhaps the most abrupt and profound metabolic challenge that a chicken must undergo; there have been no attempts to functionally map the metabolic pathways induced in liver during the embryo-to-hatchling transition. Furthermore, we know very little about the metabolic and regulatory factors that regulate lipid metabolism in late embryos or newly-hatched chicks. In the present study, we examined hepatic transcriptomes of 12 embryos and 12 hatchling chicks during the peri-hatch period—or the metabolic switch from chorioallantoic to pulmonary respiration. Results Initial hierarchical clustering revealed two distinct, albeit opposing, patterns of hepatic gene expression. Cluster A genes are largely lipolytic and highly expressed in embryos. While, Cluster B genes are lipogenic/thermogenic and mainly controlled by the lipogenic transcription factor THRSPA. Using pairwise comparisons of embryo and hatchling ages, we found 1272 genes that were differentially expressed between embryos and hatchling chicks, including 24 transcription factors and 284 genes that regulate lipid metabolism. The three most differentially-expressed transcripts found in liver of embryos were MOGAT1, DIO3 and PDK4, whereas THRSPA, FASN and DIO2 were highest in hatchlings. An unusual finding was the “ectopic” and extremely high differentially expression of seven feather keratin transcripts in liver of 16 day embryos, which coincides with engorgement of liver with yolk lipids. Gene interaction networks show several transcription factors, transcriptional co-activators/co-inhibitors and their downstream genes that exert a ‘ying-yang’ action on lipid metabolism during the embryo-to-hatching transition. These upstream regulators include ligand-activated transcription factors, sirtuins and Kruppel-like factors. Conclusions Our genome-wide transcriptional analysis has greatly expanded the hepatic repertoire of regulatory and metabolic genes involved in the embryo-to-hatchling transition. New knowledge was gained on interactive transcriptional networks and metabolic pathways that enable the abrupt switch from ectothermy (embryo) to endothermy (hatchling) in the chicken. Several transcription factors and their coactivators/co-inhibitors appear to exert opposing actions on lipid metabolism, leading to the predominance of lipolysis in embryos and lipogenesis in hatchlings. Our analysis of hepatic transcriptomes has enabled discovery of opposing, interconnected and interdependent transcriptional regulators that provide precise ying-yang or homeorhetic regulation of lipid metabolism during the critical embryo-to-hatchling transition

    Additional file 3: of Transcriptional profiling of liver in riboflavin-deficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering

    No full text
    Differentially-expressed (Adjusted P ≤ 0.05; FDR ≤ 0.05) genes identified in liver of e13 and e15 embryos. A Microsoft Excel file containing two worksheets. Work sheets “Riboflavin e13_396 DE genes” and “Riboflavin e15_1467 DE genes” list information about differentially expressed genes determined by microarray analysis. Each list provides the Roslin Institute Gallus gallus (RIGG) oligo ID, gene symbol, gene description, log2 fold change (Rf+/Rf-), average expression (Ave/Expr), t-statistic, P-value, P-value adjusted for multiple testing (adj.P ≤ 0.05), B-statistic from Limma software, and the Ref-Seq peptide ID for each gene (oligo). (XLSX 328 kb
    corecore