914 research outputs found

    Understanding the effect of seams on the aerodynamics of an association football

    Get PDF
    The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005

    Compressive Pattern Matching on Multispectral Data

    Full text link
    We introduce a new constrained minimization problem that performs template and pattern detection on a multispectral image in a compressive sensing context. We use an original minimization problem from Guo and Osher that uses L1L_1 minimization techniques to perform template detection in a multispectral image. We first adapt this minimization problem to work with compressive sensing data. Then we extend it to perform pattern detection using a formal transform called the spectralization along a pattern. That extension brings out the problem of measurement reconstruction. We introduce shifted measurements that allow us to reconstruct all the measurement with a small overhead and we give an optimality constraint for simple patterns. We present numerical results showing the performances of the original minimization problem and the compressed ones with different measurement rates and applied on remotely sensed data.Comment: Published in IEEE Transactions on Geoscience and Remote Sensin

    The effect of surface geometry on soccer ball trajectories

    Get PDF
    Two different measurement techniques are used to examine the effect of surface geometry on soccer ball trajectories. Five professional players are observed using high-speed video when taking curling free kicks with four different soccer balls. The input conditions are measured and the average launch velocity and spin are found to be approximately 24 m/s and 106 rad/s. It is found that the players can apply more spin (~50%) on average to one ball, which has a slightly rougher surface than the other balls. The trajectories for the same four balls fired at various velocities and spin rates across a sports hall using a bespoke firing device are captured using high-speed video cameras, and their drag and lift coefficients estimated. Balls with more panels are found to experience a higher lift coefficient. The drag coefficient results show a large amount of scatter, and it is difficult to distinguish between the balls. Using the results in a trajectory prediction programme it is found that increasing the number of panels from 14 to 32 can significantly alter the final position of a 20 m-curling free kick by up to 1 m

    Sports ball aerodynamics: A numerical study of the erratic motion of soccer balls

    Get PDF
    The application of the commercial CFD code, FLUENT, to sports ball aerodynamics was assessed and a validated 3D analysis technique was established for balls that have been scanned with a 3D laser scanner or drawn in CAD. The technique was used to examine the effects of surface geometry on the aerodynamic behaviour of soccer balls by comparing the flow around different balls and predicting the aerodynamic force coefficients. The validation process included performing CFD studies on 3D smooth spheres and various soccer balls, and comparing the results to wind tunnel tests and flow visualisation. The CFD technique used a surface wrapping meshing method and the Reynolds Averaged Navier-Stokes approach with the realizable k-ε turbulence model, which was found to be able to predict the drag, lift and side force coefficients (CD, CL and CS) reliably, to compare the wake behaviour, and to give good pressure distributions near the stagnation point. The main limitations of the technique with the available computational resources were its inability to accurately predict boundary layer transition or growth, but despite this, several conclusions could be drawn regarding soccer ball aerodynamics. CD was not significantly different between balls. CL and CS were found to be significantly affected by the orientation of the ball relative to its direction of travel, meaning that balls kicked with low amounts of spin could experience quasi-steady lift and side forces and move erratically from side-to-side or up and down through the air. For different balls, CD, CL and CS were predicted and their variation with orientation entered into a modified trajectory simulation program. The erratic nature of this type of kick was found to vary with details of the surface geometry including seam size, panel symmetry, number, frequency and pattern, as well as the velocity and spin applied to the ball by the player. Exploitation of this phenomenon by players and ball designers could have a significant impact on the game. © 2008 Elsevier Ltd. All rights reserved

    Validation of a multiplex reverse transcription and pre-amplification method using TaqMan(®) MicroRNA assays.

    Get PDF
    Since the discovery of microRNAs (miRNAs), different approaches have been developed to label, amplify and quantify miRNAs. The TaqMan(®) technology, provided by Applied Biosystems (ABIs), uses a stem-loop reverse transcription primer system to reverse transcribe the RNA and amplify the cDNA. This method is widely used to identify global differences between the expression of 100s of miRNAs across comparative samples. This technique also allows the quantification of the expression of targeted miRNAs to validate observations determined by whole-genome screening or to analyze few specific miRNAs on a large number of samples. Here, we describe the validation of a method published by ABIs on their web site allowing to reverse transcribe and pre-amplify multiple miRNAs and snoRNAs simultaneously. The validation of this protocol was performed on human muscle and plasma samples. Fast and cost efficient, this method achieves an easy and convenient way to screen a relatively large number of miRNAs in parallel

    Between two moments

    Full text link
    In this short note, we draw attention to a relation between two Horn polytopes which is proved in [Chenciner-Jim\'enez P\'erez] as the result on the one side of a deep combinatorial result in [Fomin,Fulton, Li,Poon], on the other side of a simple computation involving complex structures. This suggested an inequality between Littlewood-Richardson coefficients which we prove using the symmetric characterization of these coefficients given in [Carr\'e,Leclerc].Comment: 9 pages, 3 figure

    The influence of surface characteristics on the tribological interactions at the shoe-surface interface in tennis

    Get PDF
    During dynamic tennis specific movements, such as accelerating and side stepping, the traction provided by a shoe-surface combination plays an important role in the injury risk and performance of the player. Acrylic hard court tennis surfaces have been reported to have increased injury occurrence due to an increased traction coefficient. There is a requirement for an improved scientific understanding of the tribological interactions at the shoe surface interface and the effects footwear and surface parameters have on the friction mechanism developed. Often mechanical test methods used for the testing and categorisation of playing surfaces do not tend to simulate loads occurring during participation on the surface, and thus are unlikely to predict human response to the surface. A new traction testing device, discussed in this paper, has been developed to mechanically measure the traction force between the shoe and the surface under appropriate loading conditions. Acrylic Harcourt tennis surfaces generally have a rough surface topography, due to a sand and acrylic paint mixed top coating, and have a deformable under layer to provide impact attenuation. Surface micro-roughness has been found to influence the friction mechanisms presents during viscoelastic contacts, as found in footwear-surface interactions. This paper aims to further understand the influence of micro-roughness on tennis surfaces. The micro-roughness and traction of a controlled set of acrylic hard court tennis surfaces have been measured. The influence of roughness on tennis surfaces traction is discussed

    Radiance cache optimization for global illumination

    Get PDF
    Radiance caching methods have proven efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination of other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results with low shininess BRDFs. However, they get impractical for shininess of even moderate value since the number of projection coefficients increase drastically. In this paper, we propose a new radiance caching method, that handles highly glossy surfaces, while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure called Equivalent Area light Sources (EAS), capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process since it avoids the need for expressing and evaluating complex gradients

    Building Information Modelling (BIM) value realisation framework for asset owners

    Get PDF
    The paper is presenting a value realisation framework for asset owners based on an exploratory study. The study is descriptive in nature and adopting a qualitative approach towards data collection. The paper adopts the viewpoint of BIM business value measurement considering that; (i) if the process is better as a result of BIM-based processes, then it is different in some relevant way; (ii) if it is different in some relevant way as a result of certain BIM properties or characteristics, then the change is observable; (iii) if the change is observ-able because of certain direct BIM benefits, then it is countable; (iv) if it is countable using defined measurement metrics, then it is measurable; (v) if it is measurable using established measurement techniques, an organisation can value each unit and therefore, realise the benefits of BIM. The specific contribution of paper is to improve asset owners’ understanding of BIM-business value measurement techniques and approaches

    Morphological parametric mapping of 21 skin sites throughout the body using optical coherence tomography

    Get PDF
    Background Changes in body posture cause changes in morphological properties at different skin sites. Although previous studies have reported the thickness of the skin, the details of the postures are not generally given. This paper presents the effect of a change in posture on parameters such as thickness and surface roughness in 21 load-bearing and non-load-bearing sites. Materials and methods A total of 12 volunteers (8 males and 4 females) were selected in an age group of 18–35 years and of Fitzpatrick skin type I-III. Images were captured using a clinically-approved VivoSight® optical coherence tomography system and analysed using an algorithm provided by Michelson Diagnostics. Results Overextension (extending joints to full capacity) resulted in changes to thickness, roughness and undulation of the skin around the body. Discussion and conclusion The load-bearing regions have thicker skin compared to non-load-bearing sites. This is the first time that undulation topography of the stratum corneum–stratum lucidum and the dermal–epidermal junction layers have been measured and reported using statistical values such as Ra. The data presented could help to define new skin layer models and to determine the variability of the skin around the body and between participants
    • …
    corecore