15,652 research outputs found

    Fractional charge excitations in fermionic ladders

    Full text link
    The system of interacting spinless fermions hopping on a two-leg ladder in the presence of an external magnetic field is shown to possess a long range order: the bond density wave or the staggered flux phase. In both cases the elementary excitations are Z2Z_2 kinks and carry one half the charge of an electron.Comment: 4 pages, 3 figure

    Unbinding of giant vortices in states of competing order

    Get PDF
    Funding: EPSRC (UK) via Grants No. EP/I031014/1 and No. EP/H049584/1.We consider a two-dimensional system with two order parameters, one with O(2) symmetry and one with O(M), near a point in parameter space where they couple to become a single O(2+M) order. While the O(2) sector supports vortex excitations, these vortices must somehow disappear as the high symmetry point is approached. We develop a variational argument which shows that the size of the vortex cores diverges as 1/root Delta and the Berezinskii-Kosterlitz-Thouless transition temperature of the O(2) order vanishes as 1/1n(1/Delta), where Delta denotes the distance from the high-symmetry point. Our physical picture is confirmed by a renormalization group analysis which gives further logarithmic corrections, and demonstrates full symmetry restoration within the cores.Publisher PDFPeer reviewe

    Unkindest cuts: reflections on destruction and resilience in LGBTQ community-based mental health support

    Get PDF
    This article reflects on the closure of specialist community-based LGBTQ mental health support from the perspective of people who have used or work in such services. The authors discuss the need for community-based specialist support for LGBTQ people who experience mental health problems or work in mental health services

    Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity

    Full text link
    A stability criterion is derived in general relativity for self-similar solutions with a scalar field and those with a stiff fluid, which is a perfect fluid with the equation of state P=ρP=\rho. A wide class of self-similar solutions turn out to be unstable against kink mode perturbation. According to the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be a critical solution for the spherical collapse of a stiff fluid if we allow sufficiently small discontinuity in the density gradient field in the initial data sets. The self-similar scalar-field solution, which was recently found numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19} 6359), is also unstable. Both the flat Friedmann universe with a scalar field and that with a stiff fluid suffer from kink instability at the particle horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity, typos correcte

    Evolution of primordial black holes in Jordan-Brans-Dicke cosmology

    Full text link
    We consider the evolution of primordial black holes in a generalyzed Jordan-Brans-Dicke cosmological model where both the Brans-Dicke scalar field and its coupling to gravity are dynamical functions determined from the evolution equations. The evaporation rate for the black holes changes compared to that in standard cosmology. We show that accretion of radiation can proceed effectively in the radiation dominated era. The black hole lifetime shortens for low initial mass, but increases for high initial mass, and is thus considerably modified compared to the case of standard cosmology. We derive a cut-off value for the initial black hole mass, below which primordial black holes evaporate out in the radiation dominated era, and above which they survive beyond the present era.Comment: 5 pages, Latex; uses MNRAS stylefiles; minor changes; accepted for publication in MNRA

    Strong correlation effects in single-wall carbon nanotubes

    Full text link
    We present an overview of strong correlations in single-wall carbon nanotubes, and an introduction to the techniques used to study them theoretically. We concentrate on zigzag nanotubes, although universality dictates that much ofthe theory can also be applied to armchair or chiral nanotubes. We show how interaction effects lead to exotic low energy properties and discuss future directions for studies on correlation effects in nanotubes

    Growth of primordial black holes in a universe containing a massless scalar field

    Full text link
    The evolution of primordial black holes in a flat Friedmann universe with a massless scalar field is investigated in fully general relativistic numerical relativity. A primordial black hole is expected to form with a scale comparable to the cosmological apparent horizon, in which case it may go through an initial phase with significant accretion. However, if it is very close to the cosmological apparent horizon size, the accretion is suppressed due to general relativistic effects. In any case, it soon gets smaller than the cosmological horizon and thereafter it can be approximated as an isolated vacuum solution with decaying mass accretion. In this situation the dynamical and inhomogeneous scalar field is typically equivalent to a perfect fluid with a stiff equation of state p=ρp=\rho. The black hole mass never increases by more than a factor of two, despite recent claims that primordial black holes might grow substantially through accreting quintessence. It is found that the gravitational memory scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review

    Repository Software as a Platform for the Registry of Open Access Repositories

    Get PDF
    We have migrated the ROAR service to a repository software-based platform. The goal of this project was to reduce the administrative overhead for us and improve the experience for users by enabling them to control and update their own records

    Repository Software as a Platform for the Registry of Open Access Repositories

    Get PDF
    We have migrated the ROAR service to a repository software-based platform. The goal of this project was to reduce the administrative overhead for us and improve the experience for users by enabling them to control and update their own records
    corecore