Abstract

A stability criterion is derived in general relativity for self-similar solutions with a scalar field and those with a stiff fluid, which is a perfect fluid with the equation of state P=ρP=\rho. A wide class of self-similar solutions turn out to be unstable against kink mode perturbation. According to the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be a critical solution for the spherical collapse of a stiff fluid if we allow sufficiently small discontinuity in the density gradient field in the initial data sets. The self-similar scalar-field solution, which was recently found numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19} 6359), is also unstable. Both the flat Friedmann universe with a scalar field and that with a stiff fluid suffer from kink instability at the particle horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity, typos correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019