209 research outputs found

    Early affective changes and increased connectivity in preclinical Alzheimer's disease.

    Get PDF
    IntroductionAffective changes precede cognitive decline in mild Alzheimer's disease and may relate to increased connectivity in a "salience network" attuned to emotionally significant stimuli. The trajectory of affective changes in preclinical Alzheimer's disease, and its relationship to this network, is unknown.MethodsOne hundred one cognitively normal older adults received longitudinal assessments of affective symptoms, then amyloid-PET. We hypothesized amyloid-positive individuals would show enhanced emotional reactivity associated with salience network connectivity. We tested whether increased global connectivity in key regions significantly related to affective changes.ResultsIn participants later found to be amyloid positive, emotional reactivity increased with age, and interpersonal warmth declined in women. These individuals showed higher global connectivity within the right insula and superior temporal sulcus; higher superior temporal sulcus connectivity predicted increasing emotional reactivity and decreasing interpersonal warmth.ConclusionsAffective changes should be considered an early preclinical feature of Alzheimer's disease. These changes may relate to higher functional connectivity in regions critical for social-emotional processing

    Can personality close the intention-behavior gap for healthy eating? An examination with the HEXACO personality traits

    Get PDF
    The aim of this study was to investigate the predictive and moderating effects of HEXACO personality factors, in addition to theory of planned behavior (TPB) variables, on fruit and vegetable consumption. American college students (N = 1036) from 24 institutions were administered the TPB, HEXACO and a self-reported fruit and vegetable consumption measure. The TPB predicted 11–17% of variance in fruit and vegetable consumption, with greater variance accounted for in healthy weight compared to overweight individuals. Personality did not significantly improve the prediction of behavior above TPB constructs; however, conscientiousness was a significant incremental predictor of intention in both healthy weight and overweight/obese groups. While support was found for the TPB as an important predictor of fruit and vegetable consumption in students, little support was found for personality factors. Such findings have implications for interventions designed to target students at risk of chronic disease

    Comparing Four Approaches for Technical Debt Identification

    Get PDF
    Background: Software systems accumulate technical debt (TD) when short-term goals in software development are traded for long term goals (e.g., quick-and-dirty implementation to reach a release date vs. a well-refactored implementation that supports the long term health of the project). Some forms of TD accumulate over time in the form of source code that is difficult to work with and exhibits a variety of anomalies. A number of source code analysis techniques and tools have been proposed to potentially identify the code-level debt accumulated in a system. What has not yet been studied is if using multiple tools to detect TD can lead to benefits, i.e. if different tools will flag the same or different source code components. Further, these techniques also lack investigation into the symptoms of TD "interest" that they lead to. To address this latter question, we also investigated whether TD, as identified by the source code analysis techniques, correlates with interest payments in the form of increased defect- and change-proneness. Aims: Comparing the results of different TD identification approaches to understand their commonalities and differences and to evaluate their relationship to indicators of future TD "interest". Method: We selected four different TD identification techniques (code smells, automatic static analysis (ASA) issues, grime buildup, and modularity violations) and applied them to 13 versions of the Apache Hadoop open source software project. We collected and aggregated statistical measures to investigate whether the different techniques identified TD indicators in the same or different classes and whether those classes in turn exhibited high interest (in the form of a large number of defects and higher change proneness). Results: The outputs of the four approaches have very little overlap and are therefore pointing to different problems in the source code. Dispersed coupling and modularity violations were co-located in classes with higher defect proneness. We also observed a strong relationship between modularity violations and change proneness. Conclusions: Our main contribution is an initial overview of the TD landscape, showing that different TD techniques are loosely coupled and therefore indicate problems in different locations of the source code. Moreover, our proxy interest indicators (change- and defect-proneness) correlate with only a small subset of TD indicator

    Gene Signatures Derived from a c-MET-Driven Liver Cancer Mouse Model Predict Survival of Patients with Hepatocellular Carcinoma

    Get PDF
    Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated

    NMR metabolomics of cerebrospinal fluid differentiates inflammatory diseases of the central nervous system

    Get PDF
    BACKGROUND: Myriad infectious and noninfectious causes of encephalomyelitis (EM) have similar clinical manifestations, presenting serious challenges to diagnosis and treatment. Metabolomics of cerebrospinal fluid (CSF) was explored as a method of differentiating among neurological diseases causing EM using a single CSF sample. METHODOLOGY/PRINCIPAL FINDINGS: 1H NMR metabolomics was applied to CSF samples from 27 patients with a laboratory-confirmed disease, including Lyme disease or West Nile Virus meningoencephalitis, multiple sclerosis, rabies, or Histoplasma meningitis, and 25 controls. Cluster analyses distinguished samples by infection status and moderately by pathogen, with shared and differentiating metabolite patterns observed among diseases. CART analysis predicted infection status with 100% sensitivity and 93% specificity. CONCLUSIONS/SIGNIFICANCE: These preliminary results suggest the potential utility of CSF metabolomics as a rapid screening test to enhance diagnostic accuracies and improve patient outcomes

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Reducing Adverse Self-Medication Behaviors in Older Adults with Hypertension: Results of an e-health Clinical Efficacy Trial

    Get PDF
    A randomized controlled efficacy trial targeting older adults with hypertension (age 60 and over) provided an e-health, tailored intervention with the “next generation” of the Personal Education Program (PEP-NG). Eleven primary care practices with advanced practice registered nurse (APRN) providers participated. Participants (N = 160) were randomly assigned by the PEP-NG (accessed via a wireless touchscreen tablet computer) to either control (entailing data collection and four routine APRN visits) or tailored intervention (involving PEP-NG intervention and four focused APRN visits) group. Compared to patients in the control group, patients receiving the PEP-NG e-health intervention achieved significant increases in both self-medication knowledge and self-efficacy measures, with large effect sizes. Among patients not at BP targets upon entry to the study, therapy intensification in controls (increased antihypertensive dose and/or an additional antihypertensive) was significant (p = .001) with an odds ratio of 21.27 in the control compared to the intervention group. Among patients not at BP targets on visit 1, there was a significant declining linear trend in proportion of the intervention group taking NSAIDs 21–31 days/month (p = 0.008). Satisfaction with the PEP-NG and the APRN provider relationship was high in both groups. These results suggest that the PEP-NG e-health intervention in primary care practices is effective in increasing knowledge and self-efficacy, as well as improving behavior regarding adverse self-medication practices among older adults with hypertension
    corecore