22 research outputs found

    Thirteen polymorphic microsatellite markers for the European green toad Bufo viridis viridis , a declining amphibian species

    Get PDF
    We report 13 new polymorphic microsatellite markers for the European green toad Bufo viridis viridis (B. viridis subgroup), a declining amphibian from Central, Southeastern and Eastern Europe. Diversity at these loci estimated for 19 individuals ranged from two to ten alleles. Most of these primers also cross-amplify in related West-Mediterranean green toad species (Bufo balearicus, B. siculus and B. boulengeri). These microsatellites will be useful for conservation genetics of threatened Bufo viridis viridis populations and evolutionary studies of green toad taxa in secondary contact to examine hybridizatio

    Genome size rather than content might affect call properties in toads of three ploidy levels (Anura: Bufonidae: Bufo viridis subgroup)

    Get PDF
    In vertebrates, genome size has been shown to correlate with nuclear and cell sizes, and influences phenotypic features, such as brain complexity. In three different anuran families, advertisement calls of polyploids exhibit longer notes and intervals than diploids, and difference in cellular dimensions have been hypothesized to cause these modifications. We investigated this phenomenon in green toads (Bufo viridis subgroup) of three ploidy levels, in a different call type (release calls) that may evolve independently from advertisement calls, examining 1205 calls, from ten species, subspecies, and hybrid forms. Significant differences between pulse rates of six diploid and four polyploid (3n, 4n) green toad forms across a range of temperatures from 7 to 27 °C were found. Laboratory data supported differences in pulse rates of triploids vs. tetraploids, but failed to reach significance when including field recordings. This study supports the idea that genome size, irrespective of call type, phylogenetic context, and geographical background, might affect call properties in anurans and suggests a common principle governing this relationship. The nuclear-cell size ratio, affected by genome size, seems the most plausible explanation. However, we cannot rule out hypotheses under which call-influencing genes from an unexamined diploid ancestral species might also affect call properties in the hybrid-origin polyploids

    Genomic Evidence for Cryptic Speciation in Tree Frogs From the Apennine Peninsula, With Description of Hyla perrini sp. nov

    Get PDF
    Despite increasing appreciation of the speciation continuum, delimiting and describing new species is a major yet necessary challenge of modern phylogeography to help optimize conservation efforts. In amphibians, the lack of phenotypic differences between closely-related taxa, their complex, sometimes unresolved phylogenetic relationships, and their potential to hybridize all act to blur taxonomic boundaries. Here we implement a multi-disciplinary approach to evaluate the nature of two deeply-diverged mitochondrial lineages previously documented in Italian tree frogs (Hyla intermedia s. l.), distributed north and south of the Northern Apennine Mountains. Based on evidence from mitochondrial phylogenetics, nuclear phylogenomics, hybrid zone population genomics, niche modeling analyses, and biometric assessments, we propose that these lineages be considered distinct, cryptic species. Both mitochondrial and nuclear data affirm that they belong to two monophyletic clades of Pliocene divergence (~3.5 My), only admixing over a relatively narrow contact zone restricted to the southeast of the Po Plain (50–100 km). These characteristics are comparable to similarly-studied parapatric amphibians bearing a specific status. Inferred from their current geographic distribution, the two Italian tree frogs feature distinct ecological niches (<15% of niche overlap), raising questions regarding potential adaptive components contributing to their incipient speciation. However, we found no diagnostic morphological and bioacoustic differences between them. This system illustrates the speciation continuum of Western-Palearctic tree frogs and identifies additional cryptic lineages of similar divergence to be treated as separate species (H. cf. meridionalis). We recommend combined approaches using genomic data as applied here for the future taxonomic assessment of cryptic diversity in alloparapatric radiations of terrestrial vertebrates, especially in controversial taxa. Finally, we formally described the northern Italian tree frogs as a new species, Hyla perrini sp. nov

    Data from: Within-population polymorphism of sex-determination systems in the common frog (Rana temporaria)

    No full text
    In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex-determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large-scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female-biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex-determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild-caught male and female adults, except in one high-altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex-chromosome differentiation in amphibians

    Data from: Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers

    No full text
    Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates

    Data from: Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads

    No full text
    The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) At least five (up to seven) distinct allo-triploid and allo-tetraploid taxa have evolved in the Pleistocene; (ii) All maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) Allotriploid taxa possess two conspecific genomes and a deeply-diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) Maternal vs. paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization

    Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate

    No full text
    Meiosis in triploids faces the seemingly insuperable difficulty of dividing an odd number of chromosome sets by two. Triploid vertebrates usually circumvent this problem through either asexuality or some forms of hybridogenesis, including meiotic hybridogenesis that involve a reproductive community of different ploidy levels and genome composition. Batura toads (Bufo baturae; 3n = 33 chromosomes), however, present an all-triploid sexual reproduction. This hybrid species has two genome copies carrying a nucleolus-organizing region (NOR-) on chromosome 6, and a third copy without it (NOR+). Males only produce haploid NOR+ sperm, while ova are diploid, containing one NOR+ and one NOR- set. Here, we conduct sibship analyses with co-dominant microsatellite markers so as (i) to confirm the purely clonal and maternal transmission of the NOR- set, and (ii) to demonstrate Mendelian segregation and recombination of the NOR+ sets in both sexes. This new reproductive mode in vertebrates ('pre-equalizing hybrid meiosis') offers an ideal opportunity to study the evolution of non-recombining genomes. Elucidating the mechanisms that allow simultaneous transmission of two genomes, one of Mendelian, the other of clonal inheritance, might shed light on the general processes that regulate meiosis in vertebrates

    Table Genotypes LG2 adultes11 dryad

    No full text
    Table of genotypes from adults from five different populations. Genotypes include 11 polymorphic microsatellite markers

    Table Genotypes LG2 familles11 dryad

    No full text
    Table of genotypes from 10 full pedigrees, including parents, sexed juveniles, and tadpoles. Genotypes include 10 polymorphic microsatellite markers. Genotypes were obtained with an ABI3000 Prism sequencer

    Table genotypes aLG pj2011 dryad

    No full text
    Table of the genotypes from 10 pedigrees, including parents and juveniles with known phenotypic sex. Genotypes include 47 polymorphic microsatellite markers. Genotyping was conducted with an ABI3000 Prism sequencer
    corecore