23 research outputs found

    Effect of copper ion concentration on bacteria and cells

    No full text
    In the oral cavity, dental implants—most often made of commercially pure titanium—come in contact with bacteria, and antibacterial management has been researched extensively to improve patient care. With antibiotic resistance becoming increasingly prevalent, this has resulted in copper being investigated as an antibacterial element in alloys. In this study, the objective was to investigate the copper ion concentrations at which cyto-toxicity is avoided while bacterial inhibition is ensured, by comparing Cu ion effects on selected eukaryotes and prokaryotes. To determine relevant copper ion concentrations, ion release rates from copper and a 10 wt. % Cu Ti-alloy were investigated. Survival studies were performed on MC3T3 cells and Staphylococcus epidermidis bacteria, after exposure to Cu ions concentrations ranging from 9 × 10−3 to 9 × 10−12 g/mL. Cell survival increased from <10% to >90% after 24 h of exposure, by reducing Cu concentrations from 9 × 10−5 to 9 × 10−6 g/mL. Survival of bacteria also increased in the same range of Cu concentrations. The maximum bacteria growth was found at 9 × 10−7 g/mL, probably due to stress response. In conclusion, the minimum inhibitory concentrations of Cu ions for these prokaryotes and eukaryotes were found in the range from 9 × 10−5 to 9 × 10−6 g/mL. Interestingly, the Cu ion concentration correlating to the release rate of the 10 wt. % Cu alloy (9 × 10−8 g/mL) did not kill the bacteria, although this alloy has previously been found to be antibacterial. Further studies should investigate in depth the bacteria-killing mechanism of copper

    Compressive fatigue properties of an acidic calcium phosphate cement—effect of phase composition

    Get PDF
    Calcium phosphate cements (CPCs) are synthetic bone grafting materials that can be used in fracture stabilization and to fill bone voids after, e.g., bone tumour excision. Currently there are several calcium phosphate-based formulations available, but their use is partly limited by a lack of knowledge of their mechanical properties, in particular their resistance to mechanical loading over longer periods of time. Furthermore, depending on, e.g., setting conditions, the end product of acidic CPCs may be mainly brushite or monetite, which have been found to behave differently under quasi-static loading. The objectives of this study were to evaluate the compressive fatigue properties of acidic CPCs, as well as the effect of phase composition on these properties. Hence, brushite cements stored for different lengths of time and with different amounts of monetite were investigated under quasi-static and dynamic compression. Both storage and brushite-to-monetite phase transformation was found to have a pronounced effect both on quasi-static compressive strength and fatigue performance of the cements, whereby a substantial phase transformation gave rise to a lower mechanical resistance. The brushite cements investigated in this study had the potential to survive 5 million cycles at a maximum compressive stress of 13 MPa. Given the limited amount of published data on fatigue properties of CPCs, this study provides an important insight into the compressive fatigue behaviour of such materials.

    Quasi-Static and Fatigue Testing Dataset for soft bone cements according to ASTM F2118

    No full text
    This Dataset features quasi-static and fatigue data of PMMA cements. All the tests were run on an MTS 858 Mini Bionix (MTS Systems Corporation, United States). In summary, this dataset contains: Videos captured for marker tracking used in a virtual extensometer (.mp4) Quasi-static testing data for the PMMA cements (.txt) Fatigue data for three different stress levels (5MPa, 7MPa, 9MPa) (.txt) An Excel sheet with corrected tensile properties (.xlsx) General Abbreviations: VS is the V-Steady Cement VSLA is the V-Steady Cement with 12%vol linoleic acid Abbreviations for Fatigue Data: B is the batch number S is the sample numbe

    Investigation of copper alloying in a TNTZ-Cux alloy

    No full text
    Alloying copper into pure titanium has recently allowed the development of antibacterial alloys. The alloying of biocompatible elements (Nb, Ta and Zr) into pure titanium has also achieved higher strengths for a new alloy of Ti-1.6 wt.% Nb-10 wt.% Ta-1.7 wt.% Zr (TNTZ), where strength was closer to Ti-6Al-4V and higher than grade 4 titanium. In the present study, as a first step towards development of a novel antibacterial material with higher strength, the existing TNTZ was alloyed with copper to investigate the resultant microstructural changes and properties. The initial design and modelling of the alloy system was performed using the calculation of phase diagrams (CALPHAD) methods, to predict the phase transformations in the alloy. Following predictions, the alloys were produced using arc melting with appropriate heat treatments. The alloys were characterized using energy dispersive X-ray spectroscopy in scanning transmission electron microscopy (STEM-EDS) with transmission Kikuchi diffraction (TKD). The manufactured alloys had a three-phased crystal structure that was found in the alloys with 3 wt.% Cu and higher, in line with the modelled alloy predictions. The phases included the α-Ti (HCP-Ti) with some Ta present in the crystal, Ti2Cu, and a bright phase with Ti, Cu and Ta in the crystal. The Ti2Cu crystals tended to precipitate in the grain boundaries of the α-Ti phase and bright phase. The hardness of the alloys increased with increased Cu addition, as did the presence of the Ti2Cu phase. Further studies to optimize the alloy could result in a suitable material for dental implants

    Cemented injectable multi-phased porous bone grafts for the treatment of femoral head necrosis

    No full text
    Femoral head necrosis (FHN) can induce musculoskeletal disability. It presents a challenge from diagnostic and therapeutic points of view. Open surgery for the treatment of FHN is not an optimal route. To minimize the surgery window, an injectable material with a porous structure and bioactive nature is preferred. The fabrication of an injectable porous bone graft via a simple route was the aim of our study. Therefore, cemented multi-phased calcium phosphate porous granules have been studied with varied phase compositions, pore sizes and porosities, and degradation rates. Granules templated by PEG 100-600 mu m were chosen for cell toxicity and in vitro osteogenic potential testing. Rabbits, making up a femoral head necrosis model, were implanted with granule A. Mature cancellous bone tissue was observed in the femoral head defect after 2 months implantation. The results indicate that the newly formed injectable bioactive porous grafts could be a good candidate for the treatment of femoral head necrosis

    Guided bone tissue regeneration using a hollow calcium phosphate based implant in a critical size rabbit radius defect

    Get PDF
    Long bone fractures are common and sometimes difficult to treat. Autologous bone (AB), bovine bone and calcium phosphates are used to stimulate bone growth with varying results. In the present study, a calcium phosphate cement (CPC) that previously showed promising grafting capabilities was evaluated for the first time in a long bone defect. A radius defect of 20 mm was created in 20 rabbits. The defect was filled by either a hollow CPC implant that had been manufactured as a replica of a rabbit radius through indirect 3D printing, or by particulate AB as control. Defect filling and bone formation was evaluated after 12 weeks by combining micro computed tomography (mu CT) and scoring of 3D images, together with histomorphometry and histology. The mu CT and histomorphometric evaluations showed a similar amount of filling of the defect (combining graft and bone) between the CPC and AB group, but the scoring of 3D images showed that the filling in the CPC group was significantly larger. Histologically the AB graft could not be distinguished from the new bone. The AB treated defects were found to be composed of more bone than the CPC group, including reorganised cancellous and cortical bone. Both the CPC and AB material was associated with new bone formation, also in the middle of the defect, which could result in closing of the otherwise critically sized gap. This study shows the potential for an indirectly 3D printed implant in guided bone regeneration in critically sized long bone defects

    Functional properties of low-modulus PMMA bone cements containing linoleic acid

    No full text
    Acrylic bone cements modified with linoleic acid are a promising low-modulus alternative to traditional high-modulus bone cements. However, several key properties remain unexplored, including the effect of autoclave sterilization and the potential use of low-modulus cements in other applications than vertebral augmentation. In this work, we evaluate the effect of sterilization on the structure and stability of linoleic acid, as well as in the handling properties, glass transition temperature, mechanical properties, and screw augmentation potential of low-modulus cement containing the fatty acid. Neither 1H NMR nor SFC-MS/MS analysis showed any detectable differences in autoclaved linoleic acid compared to fresh one. The peak polymerization temperature of the low-modulus cement was much lower (28–30 °C) than that of the high-modulus cement (67 °C), whereas the setting time remained comparable (20–25 min). The Tg of the low-modulus cement was lower (75–78 °C) than that of the high-stiffness cement (103 °C). It was shown that sterilization of linoleic acid by autoclaving did not significantly affect the functional properties of low-modulus PMMA bone cement, making the component suitable for sterile production. Ultimately, the low-modulus cement exhibited handling and mechanical properties that more closely match those of osteoporotic vertebral bone with a screw holding capacity of under 2000 N, making it a promising alternative for use in combination with orthopedic hardware in applications where high-stiffness augmentation materials can result in undesired effects.Authors in thesis list of papers: C. Robo, D. Wenner, M. Nilsson, J. Hilborn, C. Öhman-Mägi, C. Persson</p

    Data from: Evolution of brain region volumes during artificial selection for relative brain size

    No full text
    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use micro-CT to investigate how the volumes of 11 main brain regions respond to selection for larger vs. smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions
    corecore