19 research outputs found

    Trends in Prevalence of Advanced HIV Disease at Antiretroviral Therapy Enrollment - 10 Countries, 2004-2015.

    Get PDF
    Monitoring prevalence of advanced human immunodeficiency virus (HIV) disease (i.e., CD4+ T-cell count <200 cells/μL) among persons starting antiretroviral therapy (ART) is important to understand ART program outcomes, inform HIV prevention strategy, and forecast need for adjunctive therapies.*,†,§ To assess trends in prevalence of advanced disease at ART initiation in 10 high-burden countries during 2004-2015, records of 694,138 ART enrollees aged ≥15 years from 797 ART facilities were analyzed. Availability of national electronic medical record systems allowed up-to-date evaluation of trends in Haiti (2004-2015), Mozambique (2004-2014), and Namibia (2004-2012), where prevalence of advanced disease at ART initiation declined from 75% to 34% (p<0.001), 73% to 37% (p<0.001), and 80% to 41% (p<0.001), respectively. Significant declines in prevalence of advanced disease during 2004-2011 were observed in Nigeria, Swaziland, Uganda, Vietnam, and Zimbabwe. The encouraging declines in prevalence of advanced disease at ART enrollment are likely due to scale-up of testing and treatment services and ART-eligibility guidelines encouraging earlier ART initiation. However, in 2015, approximately a third of new ART patients still initiated ART with advanced HIV disease. To reduce prevalence of advanced disease at ART initiation, adoption of World Health Organization (WHO)-recommended "treat-all" guidelines and strategies to facilitate earlier HIV testing and treatment are needed to reduce HIV-related mortality and HIV incidence

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Can floseal™ be applied safely during otologic surgery? Assessment of ototoxicity in a chinchilla animal model

    No full text
    Abstract Background In otologic surgery good visualization is paramount, and patients with bleeding diatheses or who need to be anti-coagulated can present a significant challenge. Here, we determine whether Floseal™, a hemostatic matrix, is ototoxic in a validated animal model. Methods Nine chinchillas housed in the animal care facilities of the Montreal Children’s Hospital Research Institute were used for the study. After a myringotomy incision was made in each tympanic membrane, baseline auditory brainstem response measurements were performed at 8, 20, and 25 kHz. In each animal one ear was randomized to receive Floseal™ to the middle ear cavity, whereas the other ear served as the control and received 0.9% sodium chloride. Outcome measures included early (day 7) and late (day 30) auditory brainstem response, clinical evidence of facial nerve or vestibular disturbance and histological evidence of ototoxity. Results There was no significant hearing threshold shift on auditory brainstem response across all tested frequencies for both experimental and control ear. No animals receiving Floseal™ developed facial or vestibular nerve dysfunction and there was no histological evidence of ototoxicity. Conclusion Based on the preliminary ototoxicity assessment on nine chinchillas, transtympanic Floseal™ does not appear to be ototoxic. More studies are warranted to assess the safety and applicability of the product in humans

    Safety of transtympanic application of probiotics in a chinchilla animal model

    No full text
    Abstract Background Chronic suppurative otitis media can be recalcitrant and difficult to treat, particularly with the increasing occurrence of antibiotic resistance. Lactobacillus plantarum is a probiotic that has been shown to decrease S. aureus and P. aeruginosa growth in wounds, making it a good candidate for the treatment of chronic suppurative otitis media. However, before it can be applied in the ear, its ototoxicity potential must be evaluated. Methods A prospective controlled trial was conducted in a chinchilla animal model at the Animal care research facilities of the Montreal Children’s Hospital Research Institute to determine whether Lactobacillus plantarum is ototoxic when applied transtympanically. Ten chinchillas each had one ear randomly assigned to receive 109 CFU/mL of Lactobacillus plantarum solution, while the contralateral ear received saline. Auditory brainstem responses were measured bilaterally at 8, 20, 25 kHz before, at 7–10 days after application, and at 28 days after application of probiotic or saline. Facial nerve and vestibular function were assessed clinically. Results There were no statistically significant differences in hearing thresholds between control and experimental ears at 28 days after application. A difference of 11 dB was noted in the 25 kHz range at day 7–10, but resolved by day 28. No animals receiving probiotics developed vestibular nerve dysfunction. There was no histologic evidence of auditory hair cell damaged evidenced by scanning electron microscopy. Conclusion Our study suggests that a single application of Lactobacillus plantarum at 109 CFU/mL does not cause ototoxicity in a chinchilla animal model. These preliminary safety evaluations and the pathogen inhibitory effects of L. plantarum demonstrated by previous studies present this probiotic as a candidate of interest for further investigation

    N-cadherin

    No full text

    Additional file 1: Table S1. of Safety of transtympanic application of probiotics in a chinchilla animal model

    No full text
    Auditory brainstem response threshold shifts (dB) in the control (phosphate buffered saline) and experimental (probiotic) ears at 7-10 (Early) and 28 (Late) days post application of probiotic. (DOCX 16 kb
    corecore