160 research outputs found

    SeaWiFS Postlaunch Technical Report Series

    Get PDF
    The SeaWiFS Transfer Radiometer (SXR) was built for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project as part of an Interagency Agreement with the National Aeronautics and Space Administration (NASA). The SXR is a multichannel radiometer designed to verify and compare measurements of spectral radiance at six discrete wavelengths in the visible and near infrared for various calibration sources in the SeaWiFS Project. In addition, the SXR is used to compare these sources to standards of spectral radiance maintained at the National Institute of Standards and Technology (NIST). The SXR was designed, built, and thoroughly characterized in the Optical Technology Division at NIST. A unique optical design provides six independent optical paths, each equipped with a temperature stabilized interference filter and silicon photodiode. A separate beam path through the input lens is used to visually align the SXR. The entrance windows for each channel overlap at the source, with each channel sampling a unique solid angle within the field of view of the SXR; this allows for simultaneous sampling of all channels. The combined standard relative uncertainty of spectral radiance measurements with the SXR is estimated to be between 0.6% and 1.3%. This report describes the design and construction of the SXR in detail, and gives the results of the optical characterization and calibrations done at NIST. The SXR has been used for several intercomparisons which include several SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs); those done at the Marine Optical Buoy (MOBY) laboratories in Honolulu, Hawaii; at the NEC Corporation in Yokohama, Japan; and Orbital Sciences Corporation (OSC) in Germantown, Maryland. Thorough optical characterization and calibration of the SXR was essential to the successful application of the radiometer for these measurements

    Elevated Pressure Improves the Extraction and Identification of Proteins Recovered from Formalin-Fixed, Paraffin-Embedded Tissue Surrogates

    Get PDF
    Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing.In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates.These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form suitable for proteomic analysis

    Pressure-Assisted Protein Extraction: A Novel Method for Recovering Proteins from Archival Tissue for Proteomic Analysis

    Get PDF
    Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE mouse liver. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency, a 3-fold increase in the extraction of intact proteins, and up to a 30-fold increase in the number of nonredundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of nonredundant proteins identified in the FFPE tissue was nearly identical to that of matched fresh-frozen tissue

    GeneDB--an annotation database for pathogens.

    Get PDF
    GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms

    Genetic basis of the very short life cycle of ‘Apogee’ wheat

    Get PDF
    Background: ‘Apogee’ has a very short life cycle among wheat cultivars (flowering 25 days after planting under a long day and without vernalization), and it is a unique genetic material that can be used to accelerate cycling breeding lines. However, little is known about the genetic basis of the super-short life of Apogee wheat. Results: In this study, Apogee was crossed with a strong winter wheat cultivar ‘Overland’, and 858 F2 plants were generated and tested in a greenhouse under constant warm temperature and long days. Apogee wheat was found to have the early alleles for four flowering time genes, which were ranked in the order of vrn-A1 \u3e VRN-B1 \u3e vrn- D3 \u3e PPD-D1 according to their effect intensity. All these Apogee alleles for early flowering showed complete or partial dominance effects in the F2 population. Surprisingly, Apogee was found to have the same alleles at vrn-A1a and vrn-D3a for early flowering as observed in winter wheat cultivar ‘Jagger.’ It was also found that the vrn-A1a gene was epistatic to VRN-B1 and vrn-D3. The dominant vrn-D3a alone was not sufficient to cause the transition from vegetative to reproductive development in winter plants without vernalization but was able to accelerate flowering in those plants that carry the vrn-A1a or Vrn-B1 alleles. The genetic effects of the vernalization and photoperiod genes were validated in Apogee x Overland F3 populations. Conclusion: VRN-A1, VRN-B1, VRN-D3, and PPD-D1 are the major genes that enabled Apogee to produce the very short life cycle. This study greatly advanced the molecular understanding of the multiple flowering genes under different genetic backgrounds and provided useful molecular tools that can be used to accelerate winter wheat breeding schemes

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore