134 research outputs found

    VLBI Imaging of Luminous Infrared Galaxies: AGN Cores in Mrk231, UGC 5101 & NGC 7469

    Full text link
    We report 18cm VLBI continuum imaging observations at 5 mas resolution for UGC 5101, NGC 7469, and Mrk 231, all part of a sample of Luminous Infrared Galaxies which have been shown to have strong VLBI radio cores. The radio morphology of these three systems on VLBI scales is AGN-like, with well-defined ridgelines and high-brightness yet spatially resolved components. The structure and flux densities of these VLBI components are not consistent with starburst generated radio supernovae of the type found in Arp 220. On scales of 100pc the radio continuum in all three objects appears to be dominated by an AGN, not a starburst. Radio emission on larger scales may well originate in a less compact circumnuclear star-forming region. Confirming and extending VLBI imaging of Mrk 231 by Ulvestad et al. (1999), our continuum image shows a triple structure, with a core and two lobes, classifying it as a Compact Symmetric Object (CS0). If the southern (primary) lobe/hot-spot in Mrk 231 is confined by ram pressure, we estimate a lobe advance speed, va104cv_a \sim 10^{-4}c, and an age for the jet/compact source, <106yr< 10^6 yr. We have also imaged the 1667 MHz OH maser emission in Mrk 231, which is extended on scales of 50--100 milliarcsec (40--80 pc) and probably coincides with the inner region of the disk which is seen in CO emission and HI absorption. Among OH megamasers studied at high sensitivity with mas resolution, Mrk 231 is unique in the stringent upper limits placed upon the flux density of compact OH structures of the type found in Arp 220 and other LIGs. It is possible that the circumnuclear environment of Mrk 231 has been sufficiently disrupted by the emergent QSO that the cool, dense clouds necessary for such compact masers no longer exist.Comment: 43 pages, 7 figure

    The radio spectra of the compact sources in Arp 220: A mixed population of supernovae and supernova remnants

    Get PDF
    We report the first detection at multiple radio wavelengths (13, 6 and 3.6 cm) of the compact sources within both nuclei of the Ultra Luminous Infra-Red Galaxy Arp 220. We present the radio spectra of the 18 detected sources. In just over half of the sources we find that these spectra and other properties are consistent with the standard model of powerful Type IIn supernovae interacting with their pre-explosion stellar wind. The rate of appearance of new radio sources identified with these supernova events suggests that an unusually large fraction of core collapse supernovae in Arp 220 are highly luminous; possibly implying a radically different stellar initial mass function or stellar evolution compared to galactic disks. Another possible explanation invokes very short (~3 x 10^5 year) intense (~10^3 M_Sol year^-1) star formation episodes with a duty cycle of ~10%. A second group of our detected sources, consisting of the brightest and longest monitored sources at 18 cm do not easily fit the radio supernova model. These sources show a range of spectral indexes from -0.2 to -1.9. We propose that these are young supernova remnants which have just begun interacting with a surrounding ISM with a density between 10^4 and 10^5 cm^-3. One of these sources is probably resolved at 3.6 cm wavelength with a diameter 0.9 pc. In the western nucleus we estimate that the ionized component of the ISM gives rise to foreground free-free absorption with opacity at 18 cm of <0.6 along the majority of lines of sight. Other sources may be affected by absorption with opacity in the range 1 to 2. These values are consistent with previous models as fitted to the radio recombination lines and the continuum spectrum.Comment: 44 pages, 9 figures, 2 tables. Accepted for publication in Ap

    The Lick AGN Monitoring Project: Alternate Routes to a Broad-line Region Radius

    Get PDF
    It is now possible to estimate black hole masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central black holes coevolve. Unfortunately, there are many outstanding uncertainties associated with these "virial" mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region. Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the broad-line region scales as the square root of the X-ray and Hbeta luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the broad-line region correlates most tightly with Hbeta luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of two. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.Comment: 8 pages, 1 figure, accepted for publication in Ap

    Potent Phototoxicity of Marine Bunker Oil to Translucent Herring Embryos after Prolonged Weathering

    Get PDF
    Pacific herring embryos (Clupea pallasi) spawned three months following the Cosco Busan bunker oil spill in San Francisco Bay showed high rates of late embryonic mortality in the intertidal zone at oiled sites. Dead embryos developed to the hatching stage (e.g. fully pigmented eyes) before suffering extensive tissue deterioration. In contrast, embryos incubated subtidally at oiled sites showed evidence of sublethal oil exposure (petroleum-induced cardiac toxicity) with very low rates of mortality. These field findings suggested an enhancement of oil toxicity through an interaction between oil and another environmental stressor in the intertidal zone, such as higher levels of sunlight-derived ultraviolet (UV) radiation. We tested this hypothesis by exposing herring embryos to both trace levels of weathered Cosco Busan bunker oil and sunlight, with and without protection from UV radiation. Cosco Busan oil and UV co-exposure were both necessary and sufficient to induce an acutely lethal necrotic syndrome in hatching stage embryos that closely mimicked the condition of dead embryos sampled from oiled sites. Tissue levels of known phototoxic polycyclic aromatic compounds were too low to explain the observed degree of phototoxicity, indicating the presence of other unidentified or unmeasured phototoxic compounds derived from bunker oil. These findings provide a parsimonious explanation for the unexpectedly high losses of intertidal herring spawn following the Cosco Busan spill. The chemical composition and associated toxicity of bunker oils should be more thoroughly evaluated to better understand and anticipate the ecological impacts of vessel-derived spills associated with an expanding global transportation network

    Review: The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors

    Get PDF
    The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes

    Targets of the Entamoeba histolytica Transcription Factor URE3-BP

    Get PDF
    The Entamoeba histolytica transcription factor Upstream Regulatory Element 3-Binding Protein (URE3-BP) is a calcium-responsive regulator of two E. histolytica virulence genes, hgl5 and fdx1. URE3-BP was previously identified by a yeast one-hybrid screen of E. histolytica proteins capable of binding to the sequence TATTCTATT (Upstream Regulatory Element 3 (URE3)) in the promoter regions of hgl5 and fdx1. In this work, precise definition of the consensus URE3 element was performed by electrophoretic mobility shift assays (EMSA) using base-substituted oligonucleotides, and the consensus motif validated using episomal reporter constructs. Transcriptome profiling of a strain induced to produce a dominant-positive URE3-BP was then used to identify additional genes regulated by URE3-BP. Fifty modulated transcripts were identified, and of these the EMSA defined motif T[atg]T[tc][cg]T[at][tgc][tg] was found in over half of the promoters (54% p<0.0001). Fifteen of the URE3-BP regulated genes were potential membrane proteins, suggesting that one function of URE3-BP is to remodel the surface of E. histolytica in response to a calcium signal. Induction of URE3-BP leads to an increase in tranwell migration, suggesting a possible role in the regulation of cellular motility

    Ultraluminous Infrared Galaxies

    Full text link
    Ever since their discovery in the 1970's, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measure. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.Comment: Review article, published in "Astrophysics Update 2 - topical and timely reviews on astronomy and astrophysics". Ed. John W. Mason. Springer/Praxis books. ISBN: 3-540-30312-X. 53 pages, 5 figures. Higher quality figures available on reques
    corecore