15 research outputs found

    Chitosan Nanoparticles as a Novel Drug Delivery System: A Review Article

    No full text

    Production of ÎŁ(1385)± and Ξ(1530)0 in proton–proton collisions at √s = 7 TeV

    No full text
    The production of the strange and double-strange baryon resonances (ÎŁ(1385)±, Ξ(1530)0) has been measured at mid-rapidity (|y|<0.5) in proton–proton collisions at √s = 7 TeV with the ALICE detector at the LHC. Transverse momentum spectra for inelastic collisions are compared to QCD-inspired models, which in general underpredict the data. A search for the ϕ(1860) pentaquark, decaying in the Ξπ channel, has been carried out but no evidence is seen. © 2015, CERN for the benefit of the ALICE collaboration

    Elliptic flow of identified hadrons in Pb-Pb collisions at root(NN)-N-s=2.76 Tev

    No full text
    The elliptic flow coefficient (v2) of identified particles in Pb-Pb collisions at √sNN = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle corre- lation technique, using a pseudo-rapidity gap of |∆η| > 0.9 between the identified hadron under study and the reference particles. The v2 is reported for π±, K±, K0S, p+p, φ, Λ+Λ, Ξ−+Ξ+ and Ω−+Ω+ in several collision centralities. In the low transverse momentum (pT) region, pT 3 GeV/c

    Inclusive photon production at forward rapidities in proton–proton collisions at √s = 0.9, 2.76 and 7 TeV

    No full text
    The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities (2.3 < η < 3.9) in proton–proton collisions at three center-of-mass energies, √s = 0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2± 0.3% (stat) ± 8.8% (sys) and 61.2 ± 0.3 % (stat) ± 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range. © 2015, CERN for the benefit of the ALICE collaboration

    Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose–Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p–Pb as compared to pp collisions at similar multiplicity

    Suppression of ψ(2S) production in p-Pb collisions at √sNN = 5.02 TeV

    No full text
    Abstract: The ALICE Collaboration has studied the inclusive production of the charmonium state ψ(2S) in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy (formula presented.) = 5.02 TeV at the CERN LHC. The measurement was performed at forward (2.03 < ycms< 3.53) and backward (−4.46 < ycms< −2.96) centre of mass rapidities, studying the decays into muon pairs. In this paper, we present the inclusive production cross sections σψ(2S), both integrated and as a function of the transverse momentum pT, for the two ycms domains. The results are compared to those obtained for the 1S vector state (J/ψ), by showing the ratios between the production cross sections, as well as the double ratios [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ]pp between p-Pb and proton-proton collisions. Finally, the nuclear modification factor for inclusive ψ(2S) is evaluated and compared to the measurement of the same quantity for J/ψ and to theoretical models including parton shadowing and coherent energy loss mechanisms. The results show a significantly larger suppression of the ψ(2S) compared to that measured for J/ψ and to models. These observations represent a clear indication for sizeable final state effects on ψ(2S) production.[Figure not available: see fulltext. © 2014, The Author(s)

    Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose–Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p–Pb as compared to pp collisions at similar multiplicity
    corecore