45 research outputs found

    Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase

    Get PDF
    This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. the 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzi trans-sialidase (TcTS) inhibitory activity at 1.0 mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260 mu M). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease. (C) 2011 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)USP, Fac Ciencias Farmaceut Ribeirao Preto, BR-14040903 Ribeirao Preto, SP, BrazilUSP, Fac Med Ribeirao Preto, BR-14049900 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilWeb of Scienc

    BPAN manifesting with febrile seizures and language delay:a case report from Brazil

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) is a complex group of hereditary progressive neurodegenerative diseases characterized by deposition of iron in the basal ganglia. Twelve genetic forms of this disorder have been identified in previous studies. Though they have different inheritance mechanisms all are usually associated with abnormal brain MRI findings. One of NBIA types is an X-linked disorder known as Beta-propeller Protein Associated Neurodegeneration (BPAN). Herein we describe the case of a 4-year-old girl with 2 episodes of febrile seizures, a brain MRI showing nonspecific hyperintense signal in the dentate nucleus area, and delays in language and communication development. Her diagnosis was made based on a genetic evaluation where exome sequencing revealed a mutation in the position chrX:48.933.022 region of the WDR45 gene. The literature describes different clinical presentations for BPAN, each with a different prognosis, suggesting a wide range of possible symptoms of BPAN, including mild cognitive delay and even epileptic encephalopathy (EE)

    α-Selective glycosylation affords mucin-related GalNAc amino acids and diketopiperazines active on Trypanosoma cruzi

    Get PDF
    AbstractThis work addresses the synthesis and biological evaluation of glycosyl diketopiperazines (DKPs) cyclo[Asp-(αGalNAc)Ser] 3 and cyclo[Asp-(αGalNAc)Thr] 4 for the development of novel anti-trypanosomal agents and Trypanosoma cruzi trans-sialidase (TcTS) inhibitors. The target compounds were synthetized by coupling reactions between glycosyl amino acids αGalNAc-Ser 7 or αGalNAc-Thr 8 and the amino acid (O-tBu)-Asp 17, followed by one-pot deprotection-cyclisation reaction in the presence of 20% piperidine in DMF. The protected glycosyl amino acid intermediates 7 and 8 were, in turn, obtained by α-selective, HgBr2-catalysed glycosylation reactions of Fmoc-Ser/Thr benzyl esters 12/14 with αGalN3Cl 11, being, subsequently, fully deprotected for comparative biological assays. The DKPs 3 and 4 showed relevant anti-trypanosomal effects (IC50 282–124μM), whereas glycosyl amino acids 1 and 2 showed better TcTS inhibition (57–79%) than the corresponding DKPs (13–25%)

    Sapropterin dihydrochloride therapy in dihydropteridine reductase deficiency: Insight from the first case with molecular diagnosis in Brazil

    Full text link
    Tetrahydrobiopterin (BH4_{4}) is a cofactor that participates in the biogenesis reactions of a variety of biomolecules, including l-tyrosine, l-3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, nitric oxide, and glycerol. Dihydropteridine reductase (DHPR, EC 1.5.1.34) is an enzyme involved in the BH4_{4} regeneration. DHPR deficiency (DHPRD) is an autosomal recessive disorder, leading to severe and progressive neurological manifestations, which cannot be exclusively controlled by l-phenylalanine (l-Phe) restricted diet. In fact, the supplementation of neurotransmitter precursors is more decisive in the disease management, and the administration of sapropterin dihydrochloride may also provide positive effects. From the best of our knowledge, there is limited information regarding DHPRD in the past 5 years in the literature. Here, we describe the medical journey of the first patient to have DHPRD confirmed by molecular diagnostic methods in Brazil. The patient presented with two pathogenic variants of the quinoid dihydropteridine reductase (QDPR) gene-which codes for the DHPR protein, one containing the in trans missense mutation c.515C>T (pPro172Leu) in exon 5 and the other containing the same type of mutation in the exon 7 (c.635T>C [p.Phe212Ser]). The authors discuss their experience with sapropterin dihydrochloride for the treatment of DHPRD in this case report

    Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion

    Get PDF
    AbstractReaction of 2-(2-(2-azidoethoxy)ethoxy)ethyl 6-O-(prop-2-ynyl)-β-d-galactopyranoside (7) under CuAAC conditions gives rise to mixed cyclic and linear triazole-linked oligomers, with individual compounds up to d.p. 5 isolable, along with mixed larger oligomers. The linear compounds resolve en bloc from the cyclic materials by RP HPLC, but are separable by gel permeation chromatography. The triazole-linked oligomers—pseudo-galactooligomers—were demonstrated to be acceptor substrates for the multi-copy cell surface trans-sialidase of the human parasite Trypanosoma cruzi. In addition, these multivalent TcTS ligands were able to block macrophage invasion by T. cruzi

    β-amino alcohols and their respective 2-phenyl-N-alkyl aziridines as potential DNA minor groove binders

    Get PDF
    It is known that aziridines and nitrogen mustards exert their biological activities, especially in chemotherapy, via DNA alkylation. The studied scaffold, 2-phenyl-1-aziridine, provides a distinct conformation compared to commonly used aziridines, and therefore, leads to a change in high-strained ring reactivity towards biological nucleophiles, such as DNA. The above series of compounds was tested in three breast cell lines: MCF-10, a healthy cell; MCF-7, a hormone responsive cancer cell; and MDA-MB-231, a triple negative breast cancer cell. Both aziridines and their precursors, β-amino alcohols, showed activity towards these cells, and some of the compounds showed higher selectivity index than cisplatin, the drug used as control. When the type of cell death was investigated, the synthesized compounds demonstrated higher apoptosis and lower necrosis rates than cisplatin, and when the mechanism of action was studied, the compounds were shown to interact with DNA via its minor groove instead of alkylation or intercalation

    Non-peptidic Cruzain Inhibitors with Trypanocidal Activity Discovered by Virtual Screening and in Vitro Assay

    Get PDF
    A multi-step cascade strategy using integrated ligand-and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K-i) in the low micromolar range (3-60 mu M) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 mu M), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. in order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. the IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6 +/- 0.1 mu M, tenfold lower than that obtained for benznidazole, which was taken as positive control. in addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol(-1) atom(-1) (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Sao Carlos, Dept Quim, BR-13560 Sao Carlos, SP, BrazilUniv São Paulo, Inst Quim Sao Carlos, Grp Quim Med IQSC USP, Sao Carlos, SP, BrazilUniv Calif San Francisco, Dept Pathol, Ctr Discovery & Innovat Parasit Dis, San Francisco, CA 94140 USAUniv São Paulo, Fac Med Ribeirao Preto, Dept Bioquim & Imunol, BR-14049 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biofis, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biofis, São Paulo, BrazilFAPESP: 2011/01893-3,CNPq: 301614/2010-5CAPES: 5985/11-0Web of Scienc

    BPAN manifesting with febrile seizures and language delay:a case report from Brazil

    No full text
    Neurodegeneration with brain iron accumulation (NBIA) is a complex group of hereditary progressive neurodegenerative diseases characterized by deposition of iron in the basal ganglia. Twelve genetic forms of this disorder have been identified in previous studies. Though they have different inheritance mechanisms all are usually associated with abnormal brain MRI findings. One of NBIA types is an X-linked disorder known as Beta-propeller Protein Associated Neurodegeneration (BPAN). Herein we describe the case of a 4-year-old girl with 2 episodes of febrile seizures, a brain MRI showing nonspecific hyperintense signal in the dentate nucleus area, and delays in language and communication development. Her diagnosis was made based on a genetic evaluation where exome sequencing revealed a mutation in the position chrX:48.933.022 region of the WDR45 gene. The literature describes different clinical presentations for BPAN, each with a different prognosis, suggesting a wide range of possible symptoms of BPAN, including mild cognitive delay and even epileptic encephalopathy (EE)

    Synthesis and in vitro

    No full text
    The only drugs approved for the treatment of Chagas disease, nifurtimox and benznidazole, present toxic side effects and limited efficacy in the chronic stage of the disease, which highlight the need for new drugs. Amongst the different molecular drug targets discovered in the parasite, Trypanosoma cruzi trans-sialidase (TcTS) has been considered crucial in the recognition and invasion of host cells. Hence, we report the efficient synthesis and biological evaluation (TcTS inhibition and antitrypanosomal activities) of some galactose-containing triazol-arylsulfonamides via microwave-assisted Cu(I) 1,3-dipolar azide-alkyne cycloaddition (CuAAC) based on azide benzenesulfonamides and a galactose-derived alkyne as precursors. Most of the compounds tested against TcTS showed moderate to weak inhibition (40%-15%), except one of the compounds (81%). Regarding the antitrypanosomal assay, some compounds [(IC50 70.9 µM) and (IC50 44.0 µM)] exhibited the most significant activities, although not as active as benznidazole (IC50 1.4 µM). Nevertheless, the cytotoxicity assessment showed that all compounds were not cytotoxic. In this preliminary work, we considered some compounds as lead scaffolds for further optimization

    Ruthenium complex with benznidazole and nitric oxide as a new candidate for the treatment of chagas disease.

    No full text
    Chagas disease remains a serious medical and social problem in Latin America and is an emerging concern in nonendemic countries as a result of population movement, transfusion of infected blood or organs and congenital transmission. The current treatment of infected patients is unsatisfactory due to strain-specific drug resistance and the side effects of the current medications. For this reason, the discovery of safer and more effective chemotherapy is mandatory for the successful treatment and future eradication of Chagas disease.We investigated the effect of a ruthenium complex with benznidazole and nitric oxide (RuBzNO2) against Trypanosoma cruzi both in vitro and in vivo. Our results demonstrated that RuBzNO2 was more effective than the same concentrations of benznidazole (Bz) in eliminating both the extracellular trypomastigote and the intracellular amastigote forms of the parasite, with no cytotoxic effect in mouse cells. In vivo treatment with the compound improved the survival of infected mice, inhibiting heart damage more efficiently than Bz alone. Accordingly, tissue inflammation and parasitism was significantly diminished after treatment with RuBzNO2 in a more effective manner than that with the same concentrations of Bz.The complexation of Bz with ruthenium and nitric oxide (RuBzNO2) increases its effectiveness against T. cruzi and enables treatment with lower concentrations of the compound, which may reduce the side effects of Bz. Our findings provide a new potential candidate for the treatment of Chagas disease
    corecore