89 research outputs found

    Metabolic aspects of palladium(II) potential anti-cancer drugs

    Get PDF
    This mini-review reports on the existing knowledge of the metabolic effects of palladium [Pd(II)] complexes with potential anticancer activity, on cell lines and murine models. Most studies have addressed mononuclear Pd(II) complexes, although increasing interest has been noted in bidentate complexes, as polynuclear structures. In addition, the majority of records have reported in vitro studies on cancer cell lines, some including the impact on healthy cells, as potentially informative in relation to side effects. Generally, these studies address metabolic effects related to the mechanisms of induced cell death and antioxidant defense, often involving the measurement of gene and protein expression patterns, and evaluation of the levels of reactive oxygen species or specific metabolites, such as ATP and glutathione, in relation to mitochondrial respiration and antioxidant mechanisms. An important tendency is noted toward the use of more untargeted approaches, such as the use of omic sciences e.g., proteomics and metabolomics. In the discussion section of this mini-review, the developments carried out so far are summarized and suggestions of possible future developments are advanced, aiming at recognizing that metabolites and metabolic pathways make up an important part of cell response and adaptation to therapeutic agents, their further study potentially contributing valuably for a more complete understanding of processes such as biotoxicity or development of drug resistance.AG acknowledges funding from the CICECO-Aveiro Institute of Materials project, with references UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. MM acknowledges financial support from POCentro, COMPETE 2020, Portugal 2020 and European Community through the FEDER and the Portuguese Foundation for Science and Technology (UIDB/00070/2020). TC and AM are grateful to the Portuguese Foundation for Science and Technology (FCT) for grants SFRH/BD/145920/2019 and SFRH/BD/111576/2015, respectively.publishe

    IKKβ kinase promotes stemness, migration, and invasion in KRAS-driven lung adenocarcinoma cells

    Get PDF
    KRAS oncogenic mutations are widespread in lung cancer and, because direct targeting of KRAS has proven to be challenging, KRAS-driven cancers lack effective therapies. One alternative strategy for developing KRAS targeted therapies is to identify downstream targets involved in promoting important malignant features, such as the acquisition of a cancer stem-like and metastatic phenotype. Based on previous studies showing that KRAS activates nuclear factor kappa-B (NF-κB) through inhibitor of nuclear factor kappa-B kinase β (IKKβ) to promote lung tumourigenesis, we hypothesized that inhibition of IKKβ would reduce stemness, migration and invasion of KRAS-mutant human lung cancer cells. We show that KRAS-driven lung tumoursphere-derived cells exhibit stemness features and increased IKKβ kinase activity. IKKβ targeting by different approaches reduces the expression of stemness-associated genes, tumoursphere formation, and self-renewal, and preferentially impairs the proliferation of KRAS-driven lung tumoursphere-derived cells. Moreover, we show that IKKβ targeting reduces tumour cell migration and invasion, potentially by regulating both expression and activity of matrix metalloproteinase 2 (MMP2). In conclusion, our results indicate that IKKβ is an important mediator of KRAS-induced stemness and invasive features in lung cancer, and, therefore, might constitute a promising strategy to lower recurrence rates, reduce metastatic dissemination, and improve survival of lung cancer patients with KRAS-driven disease

    Multi-organ NMR metabolomics to assess in vivo overall metabolic impact of cisplatin in mice

    Get PDF
    This work describes, to our knowledge, the first NMR metabolomics analysis of mice kidney, liver, and breast tissue in response to cisplatin exposure, in search of early metabolic signatures of cisplatin biotoxicity. Balb/c mice were exposed to a single 3.5 mg/kg dose of cisplatin and then euthanized; organs (kidney, liver, breast tissue) were collected at 1, 12, and 48 h. Polar tissue extracts were analyzed by NMR spectroscopy, and the resulting spectra were studied by multivariate and univariate analyses. The results enabled the identification of the most significant deviant metabolite levels at each time point, and for each tissue type, and showed that the largest metabolic impact occurs for kidney, as early as 1 h post-injection. Kidney tissue showed a marked depletion in several amino acids, comprised in an overall 13-metabolites signature. The highest number of changes in all tissues was noted at 12 h, although many of those recovered to control levels at 48 h, with the exception of some persistently deviant tissue-specific metabolites, thus enabling the identification of relatively longer-term effects of cDDP. This work reports, for the first time, early (1-48 h) concomitant effects of cDDP in kidney, liver, and breast tissue metabolism, thus contributing to the understanding of multi-organ cDDP biotoxicity.publishe

    Novel insights into mice multi-organ metabolism upon exposure to a potential anticancer Pd(II)-agent

    Get PDF
    Pd(II)-compounds are presently regarded as promising anticancer drugs, as an alternative to Pt(II)-based drugs (e.g., cisplatin), which typically trigger severe side-effects and acquired resistance. Dinuclear Pd(II) complexes with biogenic polyamines such as spermine (Pd2Spm) have exhibited particularly beneficial cytotoxic properties, hence unveiling the importance of understanding their impact on organism metabolism. The present study reports the first nuclear magnetic resonance (NMR)-based metabolomics study to assess the in vivo impact of Pd2Spm on the metabolism of healthy mice, to identify metabolic markers with possible relation to biotoxicity/side-effects and their dynamics. The changes in the metabolic profiles of both aqueous and lipophilic extracts of mice kidney, liver, and breast tissues were evaluated, as a function of drug-exposure time, using cisplatin as a reference drug. A putative interpretation was advanced for the metabolic deviations specifically triggered by Pd2Spm, this compound generally inducing faster metabolic response and recovery to control levels for all organs tested, compared to cisplatin (except for kidney lipid metabolism). These results constitute encouraging preliminary metabolic data suggestive of potential lower negative effects of Pd2Spm administration.This research was developed within the scope of the CICECO—Aveiro Institute of Materials, with references UIDB/50011/2020 and UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology (FCT/MEC) and when appropriate co-financed by European Regional Development Fund (FEDER) under the PT2020 Partnership Agreement. This work was also funded by the FCT through UIDB/00070/2020 (ALMBC and MPMM), PO-CI-01-0145-FEDER-0016786, and Centro-01-0145-FEDER-029956 (co-financed by COMPETE 2020, Portugal 2020 and European Community through FEDER). It also received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020. We also acknowledge the Portuguese National NMR Network (PTNMR), supported by FCT funds as the NMR spectrometer used is part of PTNMR and partially supported by Infrastructure Project Nº 022161 (co-financed by FEDER through COMPETE 2020, POCI and PORL, and the FCT through PIDDAC). M.V. thanks the FCT and the PhD Program in the department of Medicines and Pharmaceutical Innovation (i3DU) for their PhD grant PD/BD/135460/2017 and T.J.C. thanks FCT for their PhD grant SFRH/BD/145920/2019, both grants were funded by the European Social Fund of the European Union and national funds FCT/MCTES.publishe

    Immunity to Lutzomyia intermedia Saliva Modulates the Inflammatory Environment Induced by Leishmania braziliensis

    Get PDF
    Transmission of Leishmania parasites occurs during blood feeding, when infected female sand flies inject humans with parasites and saliva. Chemokines and cytokines are secreted proteins that regulate the initial immune responses and have the potential of attracting and activating cells. Herein, we studied the expression of such molecules and the cellular recruitment induced by salivary proteins of the Lutzomyia intermedia sand fly. Of note, Lutzomyia intermedia is the main vector of Leishmania braziliensis, a parasite species that causes cutaneous leishmaniasis, a disease associated with the development of destructive skin lesions that can be fatal if left untreated. We observed that L. intermedia salivary proteins induce a potent cellular recruitment and modify the expression profile of chemokines and cytokines in mice. More importantly, in mice previously immunized with L. intermedia saliva, the alteration in the initial inflammatory response was even more pronounced, in terms of the number of cells recruited and in terms of gene expression pattern. These findings indicate that an existing immunity to L. intermedia sand fly induces an important modulation in the initial immune response that may, in turn, promote parasite multiplication, leading to the development of cutaneous leishmaniasis

    IAPT chromosome data 40

    Get PDF

    A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of <it>Bothrops alternatus</it>, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay.</p> <p>Results</p> <p>A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A<sub>2 </sub>(5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A<sub>2 </sub>were essentially acidic; no basic PLA<sub>2 </sub>were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed.</p> <p>Conclusions</p> <p><it>Bothrops alternatus </it>venom gland contains the major toxin classes described for other <it>Bothrops </it>venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA<sub>2 </sub>agrees with the lower myotoxicity of this venom compared to other <it>Bothrops </it>species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.</p

    Validation of the Short Version (TLS-15) of the Triangular Love Scale (TLS-45) Across 37 Languages

    Get PDF
    Love is a phenomenon that occurs across the world and affects many aspects of human life, including the choice of, and process of bonding with, a romantic partner. Thus, developing a reliable and valid measure of love experiences is crucial. One of the most popular tools to quantify love is Sternberg’s 45-item Triangular Love Scale (TLS-45), which measures three love components: intimacy, passion, and commitment. However, our literature review reveals that most studies (64%) use a broad variety of shortened versions of the TLS-45. Here, aiming to achieve scientific consensus and improve the reliability, comparability, and generalizability of results across studies, we developed a short version of the scale—the TLS-15—comprised of 15 items with 5-point, rather than 9-point, response scales. In Study 1 (N = 7,332), we re-analyzed secondary data from a large-scale multinational study that validated the original TLS-45 to establish whether the scale could be truncated. In Study 2 (N = 307), we provided evidence for the three-factor structure of the TLS-15 and its reliability. Study 3 (N = 413) confirmed convergent validity and test–retest stability of the TLS-15. Study 4 (N = 60,311) presented a large-scale validation across 37 linguistic versions of the TLS-15 on a cross-cultural sample spanning every continent of the globe. The overall results provide support for the reliability, validity, and cross-cultural invariance of the TLS-15, which can be used as a measure of love components—either separately or jointly as a three-factor measure
    corecore