508 research outputs found
Rotating optical soliton clusters
We introduce the concept of soliton clusters -- multi-soliton bound states in
a homogeneous bulk optical medium, and reveal a key physical mechanism for
their stabilization associated with a staircase-like phase distribution that
induces a net angular momentum and leads to cluster rotation. The ringlike
soliton clusters provide a nontrivial generalization of the concepts of
two-soliton spiraling, optical vortex solitons, and necklace-type optical
beams.Comment: 4 pages, 5 figure
Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip
We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of “shutting down”, i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance
Integrated frequency comb source of heralded single photons
We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels
Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated-skeletal muscle insulin resistance
Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Reconfigurable chaos in electro-optomechanical system with negative Duffing resonators
Generating various laser sources is important in the communication systems. We propose an approach that uses a mechanical resonator coupled with the optical fibre system to produce periodic and chaotic optical signals. The resonator is structured in such a way that the nonlinear oscillation occurs conveniently. The mechanical apparatus in the configuration is the well known resonating system featured by the negative stiffness. The mechanical resonance is converted to reflected optical signal with the same dynamic properties as the mechanical oscillation, subsequently interacting with the optical signal within the optical fibre. The optical radiative force on the mechanical structure is also considered in the analysis. The coupled electro-optomechanical system has been analysed, and results show that the mechanical resonator has the capability to control the dynamics of the optical signal precisely. The system will have potential applications in tunable laser sources
Nutrient stress alters the glycosylation status of LGR5 resulting in reduced protein stability and membrane localisation in colorectal tumour cells: implications for targeting cancer stem cells
BACKGROUND
LGR5 is an important marker of intestinal stem cells and performs its vital functions at the cell membrane. Despite the importance of LGR5 to both normal and cancer stem cell biology, it is not known how microenvironmental stress affects the expression and subcellular distribution of the protein.
METHODS
Nutrient stress was induced through glucose starvation. Glycosylation status was assessed using endoglycosidase or tunicamycin treatment. Flow cytometry and confocal microscopy were used to assess subcellular distribution of LGR5.
RESULTS
Glucose deprivation altered the glycosylation status of LGR5 resulting in reduced protein stability and cell surface expression. Furthermore, inhibiting LGR5 glycosylation resulted in depleted surface expression and reduced localisation in the cis-Golgi network.
CONCLUSIONS
Nutrient stress within a tumour microenvironment has the capacity to alter LGR5 protein stability and membrane localisation through modulation of LGR5 glycosylation status. As LGR5 surface localisation is required for enhanced Wnt signalling, this is the first report to show a mechanism by which the microenvironment could affect LGR5 function
Stable vortex and dipole vector solitons in a saturable nonlinear medium
We study both analytically and numerically the existence, uniqueness, and
stability of vortex and dipole vector solitons in a saturable nonlinear medium
in (2+1) dimensions. We construct perturbation series expansions for the vortex
and dipole vector solitons near the bifurcation point where the vortex and
dipole components are small. We show that both solutions uniquely bifurcate
from the same bifurcation point. We also prove that both vortex and dipole
vector solitons are linearly stable in the neighborhood of the bifurcation
point. Far from the bifurcation point, the family of vortex solitons becomes
linearly unstable via oscillatory instabilities, while the family of dipole
solitons remains stable in the entire domain of existence. In addition, we show
that an unstable vortex soliton breaks up either into a rotating dipole soliton
or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.
Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb
We report, for the first time to the best of our knowledge, spectral phase
characterization and line-by-line pulse shaping of an optical frequency comb
generated by nonlinear wave mixing in a microring resonator. Through
programmable pulse shaping the comb is compressed into a train of
near-transform-limited pulses of \approx 300 fs duration (intensity full width
half maximum) at 595 GHz repetition rate. An additional, simple example of
optical arbitrary waveform generation is presented. The ability to characterize
and then stably compress the frequency comb provides new data on the stability
of the spectral phase and suggests that random relative frequency shifts due to
uncorrelated variations of frequency dependent phase are at or below the 100
microHertz level.Comment: 18 pages, 4 figure
Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing
In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness
- …
