1,964 research outputs found

    Hygroscopic behaviour of paper and books

    Get PDF
    This study presents experimental analysis and numerical modeling of hygroscopic moisture buffering by paper and books. First, a literature review of moisture transport properties of paper is presented. Experimental work on two paper types includes SEM analysis of the paper structure, determination of sorption isotherms and water vapor permeability measurements. A hysteretic model for paper is presented, which is based on the measurement of the main adsorption and desorption curves. It is shown that the water vapor permeability in a hysteretic model is dependent on the moisture content and not on the relative humidity. Books consist of several paper sheets with air layers between the sheets. To take the air layers into account, a parallel transport model is proposed to determine the effective moisture transport properties of books taking into account the air layers. The dynamic hygroscopic behavior of small book samples was measured. It is shown that, although the water vapor permeability of different paper types can be quite different, the effusivity of a book highly depends on the presence of the air layers and can therefore remain comparable for different paper type

    VE-cadherin and claudin-5: it takes two to tango

    Get PDF
    Endothelial barrier function requires the adhesive activity of VE-cadherin and claudin-5, which are key components of adherens and tight endothelial junctions, respectively. Emerging evidence suggests that VE-cadherin controls claudin-5 expression by preventing the nuclear accumulation of FoxO1 and -catenin, which repress the claudin-5 promoter. This indicates that a crosstalk mechanism operates between these junctional structures

    Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation

    Full text link
    Experiments of in vitro formation of blood vessels show that cells randomly spread on a gel matrix autonomously organize to form a connected vascular network. We propose a simple model which reproduces many features of the biological system. We show that both the model and the real system exhibit a fractal behavior at small scales, due to the process of migration and dynamical aggregation, followed at large scale by a random percolation behavior due to the coalescence of aggregates. The results are in good agreement with the analysis performed on the experimental data.Comment: 4 pages, 11 eps figure

    MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia.

    Get PDF
    A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors

    Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice

    Get PDF
    Intense effort has been devoted to understanding predisposition to chronic systemic inflammation because it contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR) in mice (KODMAC) is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver as well as increasing cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. Bone marrow transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice
    • …
    corecore