1,089 research outputs found

    Giant magnetic anisotropy at nanoscale: overcoming the superparamagnetic limit

    Get PDF
    It has been recently observed for palladium and gold nanoparticles, that the magnetic moment at constant applied field does not change with temperature over the range comprised between 5 and 300 K. These samples with size smaller than 2.5 nm exhibit remanence up to room temperature. The permanent magnetism for so small samples up to so high temperatures has been explained as due to blocking of local magnetic moment by giant magnetic anisotropies. In this report we show, by analysing the anisotropy of thiol capped gold films, that the orbital momentum induced at the surface conduction electrons is crucial to understand the observed giant anisotropy. The orbital motion is driven by localised charge and/or spin through spin orbit interaction, that reaches extremely high values at the surfaces. The induced orbital moment gives rise to an effective field of the order of 103 T that is responsible of the giant anisotropy.Comment: 15 pages, 2 figures, submitted to PR

    Maximally symmetric stabilizer MUBs in even prime-power dimensions

    Get PDF
    One way to construct a maximal set of mutually unbiased bases (MUBs) in a prime-power dimensional Hilbert space is by means of finite phase-space methods. MUBs obtained in this way are covariant with respect to some subgroup of the group of all affine symplectic phase-space transformations. However, this construction is not canonical: as a consequence, many different choices of covariance sugroups are possible. In particular, when the Hilbert space is 2n2^n dimensional, it is known that covariance with respect to the full group of affine symplectic phase-space transformations can never be achieved. Here we show that in this case there exist two essentially different choices of maximal subgroups admitting covariant MUBs. For both of them, we explicitly construct a family of 2n2^n covariant MUBs. We thus prove that, contrary to the odd dimensional case, maximally covariant MUBs are very far from being unique.Comment: 22 page

    5D gravitational waves from complexified black rings

    Full text link
    In this paper we construct and briefly study the 5D time-dependent solutions of general relativity obtained via double analytic continuation of the black hole (Myers-Perry) and of the black ring solutions with a double (Pomeransky-Senkov) and a single rotation (Emparan-Reall). The new solutions take the form of a generalized Einstein-Rosen cosmology representing gravitational waves propagating in a closed universe. In this context the rotation parameters of the rings can be interpreted as the extra wave polarizations, while it is interesting to state that the waves obtained from Myers-Perry Black holes exhibit an extra boost-rotational symmetry in higher dimensions which signals their better behavior at null infinity. The analogue to the C-energy is analyzed.Comment: 18 pages, 4 figures. References added, introduction and conclusions are amended, some issues related to singularity structure and symmetries are discussed. Matches the print version to appear in JHE

    Tilted String Cosmologies

    Get PDF
    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VI_h string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.Comment: 9 pages, Standard Latex Source. To appear in Physics Letters B Minor change: Authors now alphabetically liste

    On quasi-local charges and Newman--Penrose type quantities in Yang--Mills theories

    Get PDF
    We generalize the notion of quasi-local charges, introduced by P. Tod for Yang--Mills fields with unitary groups, to non-Abelian gauge theories with arbitrary gauge group, and calculate its small sphere and large sphere limits both at spatial and null infinity. We show that for semisimple gauge groups no reasonable definition yield conserved total charges and Newman--Penrose (NP) type quantities at null infinity in generic, radiative configurations. The conditions of their conservation, both in terms of the field configurations and the structure of the gauge group, are clarified. We also calculate the NP quantities for stationary, asymptotic solutions of the field equations with vanishing magnetic charges, and illustrate these by explicit solutions with various gauge groups.Comment: 22 pages, typos corrected, appearing in Classical and Quantum Gravit

    Tetrads in SU(3) X SU(2) X U(1) Yang-Mills geometrodynamics

    Full text link
    The relationship between gauge and gravity amounts to understanding underlying new geometrical local structures. These structures are new tetrads specially devised for Yang-Mills theories, Abelian and Non-Abelian in four-dimensional Lorentzian spacetimes. In the present manuscript a new tetrad is introduced for the Yang-Mills SU(3) X SU(2) X U(1) formulation. These new tetrads establish a link between local groups of gauge transformations and local groups of spacetime transformations. New theorems are proved regarding isomorphisms between local internal SU(3) X SU(2) X U(1) groups and local tensor products of spacetime LB1 and LB2 groups of transformations. The new tetrads and the stress-energy tensor allow for the introduction of three new local gauge invariant objects. Using these new gauge invariant objects and in addition a new general local duality transformation, a new algorithm for the gauge invariant diagonalization of the Yang-Mills stress-energy tensor is developed.Comment: There is a new appendix. The unitary transformations by local SU(2) subgroup elements of a local group coset representative is proved to be a new local group coset representative. This proof is relevant to the study of the memory of the local tetrad SU(3) generated gauge transformations. Therefore, it is also relevant to the group theorems proved in the paper. arXiv admin note: substantial text overlap with arXiv:gr-qc/060204

    Structure, classifcation, and conformal symmetry, of elementary particles over non-archimedean space-time

    Get PDF
    It is known that no length or time measurements are possible in sub-Planckian regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of spacetime may therefore be assumed to be non-archimedean. In this letter, the consequences of this hypothesis for the structure, classification, and conformal symmetry of elementary particles, when spacetime is a flat space over a non-archimedean field such as the pp-adic numbers, is explored. Both the Poincar\'e and Galilean groups are treated. The results are based on a new variant of the Mackey machine for projective unitary representations of semidirect product groups which are locally compact and second countable. Conformal spacetime is constructed over pp-adic fields and the impossibility of conformal symmetry of massive and eventually massive particles is proved

    On the coexistence of position and momentum observables

    Full text link
    We investigate the problem of coexistence of position and momentum observables. We characterize those pairs of position and momentum observables which have a joint observable

    Asymptotic Behaviour of Inhomogeneous String Cosmologies

    Get PDF
    The asymptotic behaviour at late times of inhomogeneous axion-dilaton cosmologies is investigated. The space-times considered here admit two abelian space-like Killing vectors. These space-times evolve towards an anisotropic universe containing gravitational radiation. Furthermore, a peeling-off behaviour of the Weyl tensor and the antisymmetric tensor field strength is found. The relation to the pre-big-bang scenario is briefly discussed.Comment: 15 pages, Late
    corecore