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One way to construct a maximal set of mutually unbiased bases (MUBs) in a prime-
power dimensional Hilbert space is by means of finite phase-space methods. MUBs
obtained in this way are covariant with respect to some subgroup of the group of
all affine symplectic phase-space transformations. However, this construction is not
canonical: as a consequence, many different choices of covariance subgroups are
possible. In particular, when the Hilbert space is 2n dimensional, it is known that
covariance with respect to the full group of affine symplectic phase-space trans-
formations can never be achieved. Here we show that in this case there exist two
essentially different choices of maximal subgroups admitting covariant MUBs. For
both of them, we explicitly construct a family of 2n covariant MUBs. We thus prove
that, contrary to the odd dimensional case, maximally covariant MUBs are very far
from being unique in even prime-power dimensions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977830]

I. INTRODUCTION

The phase-space approach to finite-dimensional quantum mechanics is a very powerful tool in
describing quantum systems with finitely many degrees of freedom, and as such it has found numerous
applications in quantum tomography and quantum information theory.1–7 This approach works when
the Hilbert space of the system isH = `2(F), where F is any Galois field, and it employs the analogy of
H with the Hilbert space L2(R) of a free quantum particle moving along the real line. The similarity
is carried over by defining a finite dimensional counterpart of the usual Wigner map, and then
using it to establish a correspondence between states on H and functions on the finite phase-space
Ω=F2.

The Wigner map is only one instance of the many objects that can be adapted from the infinite
dimensional setting by simply turning the real numbers R into a finite field F with q elements. Other
examples of this correspondence are the finite Heisenberg group and its Schrödinger representation
on H ,8–10 as well as the finite symplectic group and the associated metaplectic representation.11–16

The construction we are primarily interested in is the one that replaces the quadrature observables
on L2(R) with a set of q + 1 complementary orthonormal bases on H . Since such bases constitute
a set of q + 1 mutually unbiased bases (MUBs), the phase-space approach provides a method for
constructing a maximal set of MUBs in the q-dimensional Hilbert spaceH .17–21

Maximal sets of MUBs constructed on the model of quadrature observables are sometimes
referred to as stabilizer MUBs in order to point out their special nature among the family of all
maximal MUBs in H . Their associated orthogonal projections are in a one-to-one correspondence
with the set of the affine lines of Ω in such a way that (1) all lines parallel to a given direction
correspond to projections onto a fixed basis and (2) two sets of parallel lines with different directions
correspond to projections onto different bases. Since there are q + 1 directions in Ω and q parallel
lines for each direction, all the q(q + 1) basis vectors are thus achieved.

Being an affine space over F, the finite phase-space Ω carries the action of the associated group
of translations V ; this action clearly descends to the set of the affine lines of Ω and hence to the
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corresponding stabilizer MUBs described in the previous paragraph. On the other hand, the group
V is represented on H by means of the Schrödinger representation (usually called Pauli or Weyl-
Heisenberg group in finite dimensions). Then, by their very definition, stabilizer MUBs are covariant
with respect to such a representation.

However, many possible unitarily inequivalent stabilizer MUBs can be defined over the same
phase-spaceΩ. The source of this ambiguity relies entirely on the fact that one has quite many degrees
of freedom in the choice of the correspondence between the lines of Ω and the bases in the MUBs.
It has been shown in Ref. 22 that each equivalence class of stabilizer MUBs can be identified by
means of a suitable multiplier of V, called a Weyl multiplier, which is uniquely determined by the
class at hand. One can thus access all the relevant information about some given stabilizer MUBs
by simply looking at the properties of their associated Weyl multiplier. This is a single function on
V × V compared to the q(q + 1) vectors of the MUBs.

One further property usually required from stabilizer MUBs is covariance with respect to addi-
tional symmetries of Ω other than the phase-space translations. This comes from the fact that, being
an affine symplectic space, the phase-spaceΩ also carries an action of the symplectic group SL(2,F)
and its subgroups. Not all stabilizer MUBs are covariant with respect to such an extended action, but
only some very restricted classes. In particular, if the field F has even characteristic, stabilizer MUBs
that are covariant with respect to the full group SL(2,F) do not exist at all.22,23

However, covariance with respect to certain subgroups of SL(2,F) is often a very impor-
tant requirement, which is at the basis of many recent applications to quantum error-correcting
codes,24–26 secure quantum key distributions,27 entropic uncertainty relations,28,29 MUB-balanced
states,30 sharply covariant MUBs,31,32 and unitary designs.33,34 Hence, in the even characteristic case,
it is natural to look for all possible subgroups of SL(2,F) admitting covariant stabilizer MUBs.

In this paper, we solve this problem and show that in even characteristic, maximal covariance
subgroups are divided into two disjoint conjugacy classes, which are the finite analogues of the
maximal split and maximal nonsplit toruses of SL(2,R). As in the real case, these two kinds of
groups have essentially different actions on the affine lines of Ω and, correspondingly, on their
respective covariant stabilizer MUBs. Indeed, while a split torus permutes the lines preserving two
fixed directions, a nonsplit one cycles all the directions, acting freely on them. On the MUB side, this
means that only maximal nonsplit toruses have a transitive action on the set of bases and thus are the
most feasible groups for applications.

The paper is organized as follows. In Section II we recall the essential facts about finite phase-
spaces, covariant MUBs, and the relation between stabilizer MUBs and Weyl multipliers. In Section
III, we review the classification of all subgroups of SL(2,F) given in Refs. 35–37 and search among
them for those admitting covariant stabilizer MUBs in even characteristic. Section IV gives an explicit
picture of such subgroups, and it shows that they are either the split or nonsplit toruses in SL(2, F).
The paper concludes in Section V providing an explicit construction of some maximally covariant
stabilizer MUBs in even characteristic. More precisely, we describe a family of q inequivalent such
MUBs, thus proving in particular that maximally covariant MUBs are not unique. This points out
a basic difference with the odd characteristic case, where a unique equivalence class of maximally
covariant stabilizer MUBs is known to exist.

II. COVARIANT QUADRATURE SYSTEMS AND WEYL MULTIPLIERS

The present section is a brief exposition of the main facts of Ref. 22 that will be needed in the
following. We refer to Lang’s book38 for further details on finite fields and Galois theory.

Throughout the paper, F is a finite field with characteristic p. This implies that |F| = pn for some
positive integer n, where we denote by | · | the cardinality of a set. Moreover, F is an n-dimensional
vector space over its cyclic subfield Zp. In this section, the characteristic p may be either even or odd.
However, our main results in Sections III–V will focus on the case p = 2.

The trace of F is the Zp-linear functional Tr :F→Zp with Tr α =
∑n−1

k=0 α
pk

. We let ωp be any p-
root of unity in the complex field C and assume ωp to be fixed throughout the paper. Note that
ωTrα

p is a well defined quantity for all α ∈ F, and exactly p � 1 possible choices are available
for ωp.



032201-3 Carmeli, Schultz, and Toigo J. Math. Phys. 58, 032201 (2017)

A. Finite phase-space

In the following, the couple (Ω, V ) is always a 2-dimensional affine space over the field F, that
is:

— V is a 2-dimensional vector space over F;
— Ω is a set carrying an action of the additive Abelian group V ;
— the action of V on Ω is free and transitive.

The translate of an element x ∈Ω by means of a vector v ∈ V is denoted by x + v. Clearly, |Ω| = |V | =
|F|2.

We let D be the directions of Ω, that is, the set of 1-dimensional subspaces of V,

D = {D ⊂ V |D= {αd|α ∈ F} for some nonzero d ∈ V } .

If x ∈Ω, the affine line (or simply line) passing through x and parallel to the direction D ∈D is the
subset x + D= {x + d | d ∈D}. There are |D| = |F| + 1 directions in Ω, hence |F| + 1 different lines
passing through x. Moreover, for a fixed direction D ∈D, there are |F| disjoint lines parallel to D,
which form a partition LD(Ω) of Ω. The set L(Ω)=

⋃
D∈DLD(Ω) is the collection of all the lines of

Ω; its cardinality is |L(Ω)| = |F|(|F| + 1).

B. Quadrature systems

Suppose H is a finite dimensional Hilbert space with prime-power dimension dim H = pn. A
standard way to describe maximal sets of pn + 1 MUBs in H is to take the field F with |F| ≡ pn

elements and label each vector of the maximal MUBs with a line of Ω, in such a way that

— the |F| vectors in the same basis correspond to the lines parallel to a fixed direction;
— different bases of the |F| + 1 MUBs correspond to different directions.

Changing the labelings of the same MUBs clearly amounts to permuting the bases and the vectors
within them. We remark that, in our approach, we regard MUBs with different labelings as essentially
distinct. Anyway, we will not take care of irrelevant phase factors occurring in the vectors of the
bases. For this purpose, the most convenient definition of MUBs is in terms of their associated rank-1
orthogonal projections as follows.

Definition 1. A quadrature system (or simply quadratures) for the 2-dimensional affine space
(Ω, V ) over F and acting on the |F|-dimensional Hilbert spaceH is a map Q : L(Ω)→L(H ), where
L(H ) is the set of the linear operators onH , such that

(i) Q(l) is a rank-1 orthogonal projection for all l ∈ L(Ω);
(ii) for all D ∈D, ∑

l∈LD(Ω)

Q(l)=1,

where 1 ∈ L(H ) is the identity operator of H ;

(iii) for all D1, D2 ∈D with D1 ,D2,

tr
[Q(l1)Q(l2)

]
=

1
|F|

if l1 ∈ LD1 (Ω) and l2 ∈ LD2 (Ω),

where tr [·] denotes the Hilbert space trace.

If Q is a quadrature system for the affine space (Ω, V ), its restriction QD = Q��LD(Ω) is a spectral
map projecting onto an orthogonal basis, and the spectral maps QD1 and QD2 project onto two MUBs
if D1 ,D2. A quadrature system thus associates the |F| + 1 directions of Ω with a maximal set of
MUBs inH .

We will regard two unitarily conjugate quadrature systems as essentially the same object. That is,
if Q1 and Q2 are two quadratures for the same affine space (Ω, V ), acting on possibly different Hilbert
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spacesH1 andH2, we say that Q1 and Q2 are equivalent if there is a unitary operator U:H 1→H 2

such that
Q2(l)=UQ1(l)U∗ ∀l ∈ L(Ω) . (1)

C. Symmetries

The natural symmetry group of the affine space (Ω, V ) is the affine group GL(V ) o V , which is
the semidirect product of the group GL(V ) of all invertible F-linear maps of V with the translation
group V itself (where V is the normal factor). The action of GL(V ) o V on Ω is the extension of the
action of V by translations; it depends on the choice of an origin o ∈Ω and, once o is fixed, it is given
by

(A, v) · x = o + A(uo,x + v) ∀x ∈Ω, (A, v) ∈GL(V ) o V ,

where uo,x is the unique vector such that x = o + uo,x. By means of this formula, we can also define
an action of GL(V ) o V on L(Ω), that is,

(A, v) · (x + D)= (A, v) · x + AD ∀x + D ∈ L(Ω), (A, v) ∈GL(V ) o V .

Covariance of a quadrature system is then understood with respect to the latter group action.

Definition 2. Let G ⊆GL(V ) o V be any subgroup. A quadrature system Q for the affine space
(Ω, V ) acting on the Hilbert spaceH is G-covariant if there exists a unitary projective representation
U of G onH such that

Q(g · l)=U(g)Q(l)U(g)∗ ∀l ∈ L(Ω), g ∈G . (2)

The choice of the unitary operator U(g) in (2) is unique up to multiplication by an arbitrary
phase factor depending on g (see Ref. 22, Proposition 3.3); this explains the necessity of dealing with
projective representations. We denote by QG(Ω) the set of all G-covariant quadrature systems for
the affine space (Ω, V ). If G≡V is the group of phase space translations, a V -covariant quadrature
system projects on a set of stabilizer MUBs (or states, codes) in the terminology of Refs. 24–26 and
31–33. Quite many different covariant quadrature systems are then known to exist in this case.18,22

The essential point is that, by enlarging the covariance group G to include elements of GL(V ), it may
happen that the set QG(Ω) becomes empty.

It is known that in characteristic p, 2 there is a unique maximal subgroup G0 ⊆GL(V ) making
the set QG0oV (Ω) nonempty, that is, the group G0 = SL(V ) of unit determinant elements in GL(V )
(see Ref. 18, Appendix B). In characteristic p = 2, however, we have QSL(V )oV (Ω)= ∅ by Ref. 22,
Theorem 7.5, and the problem of finding all the subgroups G0 ⊂GL(V ) admitting (G0oV ) -covariant
quadrature systems is open up to now. The objective of the present paper is to solve this question and
thus completely determine the set

G = {G0 ⊂GL(V ) |G0 is a subgroup and QG0oV (Ω), ∅} (3)

in even characteristic. Note that also in this case any G0 ∈ G must be a subgroup of SL(V ) by Ref.
22, Proposition 7.1. Moreover, the set G is nontrivial, since by Theorem 8.4 of the same reference,
the nonsplit toruses of SL(V ) are elements of G. The contribution of the present paper is to show that
nonsplit toruses actually do not exhaust the set G, but they are just “one half” of it.

D. V -covariant quadratures and Weyl multipliers

Our approach to the problem of determining the set G relies on the classification of V -covariant
quadrature systems by means of suitably defined associated multipliers, a topic that was extensively
exposed in Ref. 22. Here we briefly recall the essential points.

Theorem 1 (Ref. 22, Propositions 4.2 and 4.6). Suppose Q is a V-covariant quadrature system
for the affine space (Ω, V ) acting on the Hilbert space H . Let o ∈Ω be any point. Then there exists
a unique projective unitary representation Wo of V onH such that
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(W.1) Wo(v)Q(l)Wo(v)∗ =Q(l + v) for all l ∈ L(Ω) and v ∈ V;

(W.2) Wo(d)Q(o + D) = Q(o + D) for all D ∈D and d ∈D.

The multiplier m of the projective representation Wo does not depend on the choice of the point o,
and it satisfies the following two relations:

(M.1) for any D ∈D, m(d1,d2) = 1 for all d1, d2 ∈D;

(M.2) m(u, v)m(v, u)=ωTr S(u,v)
p for all u, v ∈ V, where S is a symplectic form44 on V which is uniquely

determined.

We recall that the multiplier of Wo is the function m : V × V→{z ∈C | zz= 1} such that

Wo(u + v)=m(u, v)Wo(u)Wo(v) ∀u, v ∈ V .

It satisfies the cocycle relation

m(u + v, w)m(u, v)=m(u, v + w)m(v, w) ∀u, v, w ∈ V .

By items (M.1) and (M.2), the projective representation Wo has the following two additional
properties:

(W.3) the restriction Wo |D is an ordinary (i.e., nonprojective) representation of D for all D ∈D;

(W.4) Wo satisfies the commutation relation

Wo(u)Wo(v)=ωTr S(u,v)
p Wo(v)Wo(u) ∀u, v ∈ V .

A projective unitary representation of V with properties (W.3) and (W.4) is called a Weyl system
for the symplectic space (V, S). The Weyl system Wo satisfying the additional conditions (W.1) and
(W.2) is then said to be associated with the V -covariant quadratures Q and centered at o. Accordingly,
any multiplier m of the additive Abelian group V which satisfies items (M.1) and (M.2) of Theorem
1 is called a Weyl multiplier for the symplectic space (V, S). Theorem 1 then asserts that, through
any associated centered Weyl system, an element Q∈ QV (Ω) defines a symplectic form S on V and
a Weyl multiplier m for (V, S) in an unambiguous way. We call such S and m the symplectic form
and Weyl multiplier associated with Q. It is easy to check that if Q1, Q2∈ QV (Ω) are equivalent in
the sense of (1), then the symplectic forms and Weyl multipliers associated with Q1 and Q2 are the
same. Remarkably, the converse of this fact also holds.

Theorem 2 (Ref. 22, Theorem 6.3). Let S be a symplectic form on V, and m a Weyl multiplier for
(V, S). Then there exists a unique equivalence class QV (Ω, S, m) of V-covariant quadrature systems
for (Ω, V ) having S and m as the associated form and multiplier.

For any symplectic form S on V, Weyl multipliers m for (V, S) exist by Ref. 22, Proposition
6.1 (see also (6) and Section V below for some explicit constructions of m). Hence the set
QV (Ω) ⊃ QV (Ω, S, m) is always nonempty. But what really matters in the equivalence class of a
V -covariant quadrature system is its Weyl multiplier and not its associated symplectic form. In fact, it
is easy to see that for the same symplectic space (V,S), there exist quite many different Weyl multipli-
ers. In other words, if we write QV (Ω, S) for the totality of V -covariant quadrature systems having S
as the associated symplectic form, in the chain of inclusions QV (Ω) ⊃ QV (Ω, S) ⊃ QV (Ω, S, m), only
the latter set is made of a single equivalence class of quadratures.

Remark 1. According to our definition, two quadrature systems Q1 and Q2 are equivalent if they
are unitarily conjugate as functions Qi : L(Ω)→L(H ) (see (1)). This condition is much stronger than
only requiring the two sets of rank-1 projections ran Qi = {Qi(l) | l ∈ L(Ω)} (i = 1, 2) to be unitarily
conjugate. Actually, if Q1, Q2 ∈ QV (Ω), then ran Q1 and ran Q2 are always unitarily conjugate as
unordered sets, regardless of the associated symplectic forms and Weyl multipliers (see Ref. 22,
Theorem 7.9).
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E. The explicit form of V -covariant quadratures

We assume that the quadrature system Q ∈ QV (Ω, S, m) is given and acts on the Hilbert space
H . In order to write down Q explicitly, we need to choose

— an origin o ∈Ω;
— a symplectic basis of (V,S), i.e., an F-linear basis {e1, e2} of V such that S(e1, e2) = 1;
— a unit vector φ0 ∈H in the range of Q(o+ Fe2), where Fe2 = {αe2 | α ∈ F} is the direction in V

along e2.

After this preparation, if Wo is the Weyl system associated with Q and centered at o, we set

φγ =Wo(γe1)φ0 ∀γ ∈ F .

We then have φγ ∈ ran [Wo(γe1)Q(o + Fe2)]= ran [Q(o + γe1 + Fe2)] by covariance of Q. Since
LFe2 (Ω)= {o+γe1+Fe2 | γ ∈ F}, by properties (i) and (ii) of a quadrature system, the vectors {φγ |γ ∈ F}
form an orthonormal basis ofH . In this basis, the Weyl system Wo is given by

Wo(α1e1 + α2e2)φγ =m(α1e1, α2e2)ω−Trα2γ
p φγ+α1 ∀α1, α2 ∈ F . (4)

Indeed,

Wo(α1e1 + α2e2)φγ =m(α1e1, α2e2)Wo(α1e1)Wo(α2e2)Wo(γe1)φ0

=m(α1e1, α2e2)ωTr S(α2e2,γe1)
p Wo(α1e1)Wo(γe1)Wo(α2e2)φ0

=m(α1e1, α2e2)ω−Trα2γ
p φγ+α1

since Wo(α2e2)φ0 = φ0 because Wo is centered at o (see item (W.2) of Theorem 1). By Ref. 22,
Proposition 5.2, for all u, v ∈ V with u, 0,

Q(o + v + Fu)=
1
|F|

∑
λ∈F

ωTr S(v,λu)
p Wo(λu),

where Fu is the direction along u, and hence,

Q(o + v + Fu)φγ =
1
|F|

∑
λ∈F

m(λα1e1, λα2e2)ω
Trλ[α2(β1−γ)−α1β2]
p φγ+λα1

with u= α1e1 + α2e2, v= β1e1 + β2e2 .

(5)

In the converse direction, if m is any given Weyl multiplier for the symplectic space (V, S), one
can pick a |F|-dimensional Hilbert space H , fix an orthonormal basis {φγ | γ ∈ F} of H , and define
the maps Wo and Q as in (4) and (5). As Wo and Q are unitarily equivalent to the maps defined in the
previous paragraph, we have Q ∈ QV (Ω, S, m) and Wo is its associated Weyl system centered at o.

F. More symmetries besides translations

We already noticed that G0 ⊆ SL(V ) is a necessary condition for the setQG0oV (Ω) to be nonempty;
indeed, this follows since G0 must preserve the symplectic form associated with any quadrature
Q ∈ QG0oV (Ω) ⊆ QV (Ω) (see Ref. 22, Proposition 7.1). In order to find a sufficient condition, we need
the notion of G0-invariance for a Weyl multiplier m, that is,

m(Au, Av)=m(u, v) ∀u, v ∈ V , A ∈G0 .

The existence of G0-invariant Weyl multipliers is equivalent to the set QG0oV (Ω) being nonempty.
Indeed, we have the following fact.

Proposition 1 (Ref. 22, Proposition 7.2). Let G0 ⊆ SL(V ) be any subgroup. A quadrature system
Q ∈ QV (Ω) is (G0 o V ) -covariant if and only if its associated Weyl multiplier is G0-invariant.

As a consequence, the set G of (3) coincides with

G = {G0 ⊆ SL(V ) | there exist G0-invariant Weyl multipliers} .
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In odd characteristic, the multiplier

m(u, v)=ωTr S(2−1v,u)
p (6)

is a Weyl multiplier for the symplectic space (V, S) which is invariant with respect to the whole group
SL(V ) (see Ref. 22, Proposition 7.4); therefore, G is actually the set of all the subgroups of SL(V ).
However, in even characteristic such an m cannot be defined, and we need to look for subgroups
G0 ⊂ SL(V ) admitting G0-invariant Weyl multipliers case by case. This is done in Section III, and the
detailed description of the set G in characteristic p = 2 is provided in Section IV (see Theorem 4).

III. ALL COVARIANT QUADRATURE SYSTEMS IN CHARACTERISTIC 2

From now on, we focus on characteristic p = 2. The following is then the key step towards our
characterization of the set G in this case.

Lemma 1. Suppose F has characteristic p = 2. Then QG0oV (Ω)= ∅ for all subgroups G0 ⊆ SL(V )
such that |G0| is even.

Before proving the lemma, observe that in characteristic p = 2 we have +1 = �1 in F, andω2 =−1
is the unique possible choice of a 2-root of unity in C. Moreover, the square map α 7→ α2 is an
automorphism of F over Z2. Its inverse is the map α 7→ α1/2 = α |F |/2.

Proof of Lemma 1. By Proposition 1, it is enough to show that, if G0 has even order, there do not
exist G0-invariant Weyl multipliers. So, let us assume by contradiction that |G0| is even and m is a
G0-invariant Weyl multiplier. By Cauchy theorem (see Ref. 39, p. 97), there exists an order 2 element
in G0, that is, a symplectic map A ∈G0 such that A, I and A2 = I. Let e2 ∈ V be such that Ae2 , e2.
Then e1 =Ae2 + e2 , 0 because +1 = 1; moreover, Ae1 = e1. Hence the vectors {e1, e2} are linearly
independent and thus form an F-linear basis of V. In particular, S(e1, e2)= α , 0 since S , 0. Possibly
rescaling e2 by α−1, we can assume that {e1, e2} is a symplectic basis of (V, S). The two conditions
det A = 1 and Ae1 = e1 imply that A is upper triangular with diagonal entries (1,1) in the basis
{e1, e2}; that is, Ae2 = βe1 + e2 for some β , 0.

Now, choose γ ∈ F such that Tr γ = 1 (this is always possible by Ref. 38, Theorem VI.5.2). Let

f1 = (βγ)1/2 e1, f2 = (β−1γ)
1/2

e2 .

Then
Af1 = f1, Af2 = f1 + f2 (7)

and
Tr S(f1, f2)= 1 . (8)

We have

1=m(f1 + f2, f1 + f2) (property (M.1))

=m(f1 + f2, f1 + f2)m(f1, f2)m(f1, f2)

=m(f1 + f2 + f1, f2)m(f1 + f2, f1)m(f1, f2) (multiplier property)

=m(f2, f2)m(Af2, Af1)m(f1, f2) (by (7))

=m(f2, f1)m(f1, f2) (property (M.1) and G0-invariance)

= (−1)Tr S(f1,f2) (property (M.2))

=−1 (by (8))

which is the desired contradiction. �

The next step is to list all the possible subgroups of SL(V ). By the previous result, for p = 2 all
the subgroups having even order can be dropped from G. The classification of the subgroups of the
finite projective unimodular group PSL(V ) = SL(V )/{I,�I} goes back to the papers of Moore and
Wiman,35,36 which cover both the even and odd characteristic cases (see Ref. 37, pp. 285-286, for a
summary of the subgroups found by Moore and Wiman). Note that PSL(V ) = SL(V ) for p = 2, hence
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in our case Refs. 35–37 actually enumerate all the subgroups of SL(V ). For the present purposes,
we use here the more modern version of the classification of Moore and Wiman given in Suzuki’s
book.39

Theorem 3. In characteristic p = 2, any subgroup of SL(V) is isomorphic to one of the following
groups.

(a) The dihedral groups of order 2(|F| ± 1) and their subgroups.
(b) A group H of order |F|(|F| − 1) and its subgroups. A Sylow 2-subgroup Q of H is isomorphic

to Zk
2, Q is normal in H, and the factor group H/Q is a cyclic group of order |F| − 1.

(c) The alternating groups A4 or A5.
(d) SL(V′), where V′ is a 2-dimensional vector space over a subfield F′ ⊆ F.

Proof. This is an immediate application of Ref. 39, Theorem III.(6.25) and III.(6.26), when q= |F|
is even, since PSL(V ) = SL(V ) in this case. In particular, each item follows from the corresponding
one in Suzuki’s Theorem III.(6.25) by observing that

(a,b) the greatest common divisor of 2 and |F| − 1 is d = 1, and using Ref. 39, I.(9.14), for the
characterization of the elementary Abelian 2-groups defined in II.(5.22) therein;

(c) SL(V ) has no subgroups isomorphic to the symmetric groupΣ4 by Ref. 39, item (iii) of Theorem
III.(6.26);

(d) if F′ is any field such that |F′ |m = |F|, then PGL(2,F′)=PSL(2,F′)=SL(2,F′) since F′ is a
subfield of F and hence also has even characteristic.

�

Combining Lemma 1 and Theorem 3 we obtain the following conclusion.

Proposition 2. Let p = 2, and suppose S is any symplectic form on V. Then the set
QG0oV (Ω, S)=QG0oV (Ω)∩QV (Ω, S) is not empty if and only if G0 is a cyclic group with |G0| odd.

Proof. The proof of sufficiency is a straightforward adaptation of the proof of Ref. 22, Proposition
8.3. Indeed, suppose G0 is a cyclic group with odd order. If m0 is any Weyl multiplier for the symplectic
space (V, S), let m(u, v)=

∏
A∈G0

m0(Au, Av). Then m is a multiplier of V, which clearly satisfies
m|D×D = 1 for all D ∈D, since all its factors do it. Since m0(Au, Av)m0(Av, Au)= (−1)Tr S(Au,Av) =

(−1)Tr S(u,v) for every A ∈G0, we have

m(u, v)m(v, u)= (−1) |G0 |Tr S(u,v) = (−1)Tr S(u,v)

because |G0| is odd. Therefore, m satisfies items (M.1) and (M.2) of Theorem 1, that is, it is a Weyl
multiplier for (V,S). For all B ∈G0,

m(Bu, Bv)=
∏

A∈G0

m0(ABu, ABv)=
∏

A∈G0

m0(Au, Av)=m(u, v)

which shows that m is G0-invariant. Hence QG0oV (Ω, S)⊃ QV (Ω, S, m), ∅ by Theorem 2 and
Proposition 1.

Conversely, if QG0oV (Ω, S), ∅, then |G0| is odd by Lemma 1. So, we need to check which ones
of the groups listed in Theorem 3 have odd order. Since |A4| = 12 and |A5| = 60, the possibilities in
item (c) of Theorem 3 are excluded. Moreover, by Ref. 39, p. 81, we have |SL(V ′)| = |F′ |(|F′ |2 − 1),
which is even when V ′ is a vector space over a subfield F′ ⊆ F; hence G0 cannot be as in item (d) of
Theorem 3. Thus, items (a) and (b) are the only remaining possibilities.

The dihedral group D2n is the semidirect product Z2 oZn, where the nontrivial element 1 ∈ Z2

acts on the normal factor Zn as

(1, 0)(0, x)(1, 0)−1 = (0,−x) ∀x ∈ Zn .

If G0 is a subgroup of D2( |F |±1) and (z, x) ∈G0, then z = 0, as otherwise (1, x)2 = (0,�x + x) = (0, 0)
implying that |G0| is even. It follows that G0 ⊆ Z |F |±1, hence G0 is a cyclic group.
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Finally, suppose G0 ⊆H, where H is as in item (b) of Theorem 3. Then the subgroup Q0 =Q∩G0

is normal in G0, and the quotient group G0/Q0 is naturally identified with a subgroup of H/Q. Since
Q is a Sylow 2-subgroup of H, either Q0 is trivial or its order is even; hence Q0 is trivial because |G0|
is odd. Since H/Q is cyclic of order |F| − 1, also its subgroup G0/Q0 = G0 is cyclic.

In conclusion, |G0| being odd implies that G0 is cyclic, and this concludes the proof. �

IV. CYCLIC SUBGROUPS OF SL(V )

By Proposition 2,

G = {G0 ⊂ SL(V ) |G0 is cyclic and with odd order} in characteristic p= 2 .

We will shortly see that the cyclic subgroups G0 ⊂ SL(V ) divide into three types, each type being
determined by the eigenvalues of any of its generators. Recall that the eigenvalues of an arbitrary
symplectic map A ∈ SL(V ) are the roots of its characteristic polynomial

pA(X)= det(A − XI)=X2 − tr(A)X + 1 (9)

and thus they are two possibly coinciding elements ξ1 and ξ2 of the quadratic extension F̃ of F.
Since pA has coefficients in F, either ξ1, ξ2 ∈ F or ξ1, ξ2 ∈ F̃ \ F, and in the latter case ξ2 = ξ1, where
ξ1 = ξ

|F |
1 is the conjugate of ξ1. Both of the eigenvalues are nonzero, and they satisfy the relations

ξ1 + ξ2 = tr (A) and ξ1ξ2 = 1. In particular, in even characteristic the equality ξ1 = ξ2 holds if and only
if ξ1 = ξ2 = 1, and in this case tr (A)= 0.

Again, for the remaining of the section we restrict ourselves to even characteristic. The following
terminology then summarizes all the possibilities for an element A ∈ SL(V ) (see, e.g., Ref. 40, p. 95).

Definition 3. In characteristic p = 2, an element A ∈ SL(V ) is said to be

— split, if A = I or A has two different eigenvalues ξ, ξ−1 ∈ F;
— nonsplit, if A has two different eigenvalues ξ, ξ−1 ∈ F̃ \ F, with ξ−1 = ξ;
— unipotent, if A, I and 1 is the sole eigenvalue of A.

A is semisimple if it is either split or nonsplit.

Let us fix a basis of V over F and write any element A ∈ SL(V ) as a unit determinant 2× 2 matrix
with entries in F with respect to such a basis. If A ∈ SL(V ) is semisimple and ξ, ξ−1 ∈ F̃ are its two
eigenvalues, then

A=U

(
ξ 0
0 ξ−1

)
U−1 for some 2 × 2 matrix U with entries in F̃ .

All the entries of U can be chosen in F if and only if A is split. In any case, Ak = I if and only if
ξk = ξ−k = 1, that is, the order k0 of A and ξ coincide. Hence, we have the following:

— if A is split, then k0 divides the order of the cyclic multiplicative group F∗ of the nonzero
elements of F, which is |F∗ | = |F| − 1;

— if A is nonsplit, then k0 divides the order of the cyclic group M = {ξ ∈ F̃∗ | ξξ = 1}, which is
|F| + 1 (see Ref. 22, Section 8, for a simple proof).

Finally, for 0 < k < k0, the eigenvalues of Ak are ξk and ξ−k . Therefore, if A is semisimple, then also
Ak is semisimple for all 0 < k < k0.

On the other hand, if A is unipotent, there is a nonzero e1 ∈ V such that Ae1 = e1. To find the order
of A, pick a vector e2 ∈ V linearly independent of e1. Then Ae2 = αe2 + βe1, with α = 1 by the unit
determinant condition, and β , 0 because A, I . Moreover, we have A2e1 = e1 and A2e2 = e2+2βe1 =

e2, hence A2 = I. In particular, the order of A is 2.
This discussion shows that the next definition is consistent and exhausts all the cyclic subgroups

of SL(V ).
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Definition 4. A cyclic subgroup of SL(V ) is a torus [respectively, a split torus, nonsplit torus,
unipotent subgroup] if it is generated by a semisimple [respectively, split, nonsplit, unipotent] element
of SL(V ).

Definitions 3 and 4 can be easily extended to odd p. It is then a general fact, valid in all char-
acteristics, that there exists a maximal split [respectively, nonsplit] torus T ⊂ SL(V ), and all split
[respectively, nonsplit] toruses of SL(V ) are conjugate to subgroups of T. Moreover, all the unipotent
subgroups of SL(V ) are conjugate in even characteristic, and they are divided into four conjugacy
classes when p, 2. Indeed, this follows from Ref. 35, Section 6 (see also Ref. 37, pp. 262–268, and
39, III.(6.23)). Here we report the following elementary proof in characteristic p = 2.

Proposition 3. Suppose p = 2.

(a) There exists a split [respectively, nonsplit] torus T ⊂ SL(V ) such that |T | = |F|−1 [respectively,
|T | = |F| + 1]. Any split [respectively, nonsplit] torus has odd order and is conjugated to a
subgroup of T. In particular, all toruses of the same order are conjugated.

(b) There exists a unique conjugacy class of unipotent subgroups in SL(V). All unipotent subgroups
have order 2.

Proof. We preliminarly prove that if ξ ∈ F̃ is such that ξ + ξ−1 ∈ F, then the conjugacy class of
the symplectic map

Aξ =

(
ξ + ξ−1 1

1 0

)
(10)

is the set

C(Aξ )= {A ∈ SL(V ) \ {I } | ξ and ξ−1 are the eigenvalues of A} .

Indeed, by (9) the latter set is C(Aξ )= {A ∈ SL(V ) \ {I } | tr (A)= ξ + ξ−1}. Therefore, Aξ ∈ C(Aξ ), and
it suffices to show that any A ∈ SL(V ) \ {I } is such that

A=U

(
tr (A) 1

1 0

)
U−1 for some U ∈ SL(V ) .

Writing A in matrix form

A=

(
α β
γ δ

)
with α, β, γ, δ ∈ F, αδ + βγ = 1,

it can be directly verified that a possible choice of U is

U =




*
,

0 β1/2

β−1/2 αβ−1/2
+
-

if β , 0

*.
,

γ−1/2 δγ−1/2

0 γ1/2
+/
-

if γ , 0

(1 + α)−1
(
α 1
1 α

)
if β = γ = 0 and δ = α−1

,

thus proving the claim.
In order to prove (a), observe first of all that F∗ = {1} if and only if F=Z2, and the claims for

split toruses are trivial in this case since T = {I} is the unique split torus of SL(V ). Next, suppose
ξ , 1 is a generator of the cyclic group F∗ [respectively, M = {ξ∈ F̃∗ | ξξ = 1}] and define Aξ as in
(10). Then Aξ is a split [respectively, nonsplit] element of the same order as ξ, that is, Aξ generates
a split [respectively, nonsplit] torus T of order |T | = |F∗ | = |F| − 1 [respectively, |T | = |M | = |F| + 1].
If T ′ is any split [respectively, nonsplit] torus generated by a split [respectively, nonsplit] element
A′ ∈ SL(V ), either A′ = I or A′ has two different eigenvalues ξ ′ and ξ ′−1 with ξ ′∈ F∗ [respectively,
ξ ′ ∈M]. It follows that ξ ′ = ξk for some k, hence A′ ∈ C(Ak

ξ ) by the previous claim. Therefore, T ′ is

conjugated to the cyclic subgroup of T generated by Ak
ξ . Since T has a unique cyclic subgroup of
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each order dividing |T | (see Ref. 38, Proposition I.4.2 and I.4.3(iv)), all split [respectively, nonsplit]
toruses of the same order are conjugated among them and with a unique subgroup of T. Finally,
|F| − 1= 2r − 1 and |F| + 1= 2r + 1 are relatively prime; hence two toruses T1 and T2 such that
|T1| = |T2| are either both split or both nonsplit, and so they are conjugated.

The proof of (b) follows since by definition any unipotent element B ∈ SL(V ) is such that B, I
and ξ = ξ−1 = 1 are the two eigenvalues of B; all unipotent B’s are then conjugated to

A1 =

(
0 1
1 0

)
by the claim at the beginning of the proof. Since A2

1 = I , the same holds for B. �

Remark 2. The proof of Proposition 3 also yields an explicit expression for a symplectic map
A generating a maximal cyclic subgroup of SL(V ). Indeed, such a map is given by (10) with ξ a
generator of either F∗ or M in the case of a maximal torus, or ξ + ξ−1 = 0 for unipotent subgroups.

We are now in position to state and prove the main result of the paper.

Theorem 4. In characteristic p = 2 and for any symplectic form S, the set QG0oV (Ω, S) is
nonempty if and only if G0 is a torus. The maximal subgroups G0 ⊂ SL(V ) admitting (G0 o V )
-covariant quadrature systems are either maximal split or maximal nonsplit toruses.

Proof. The theorem immediately follows by combining Propositions 2 and 3. �

Remark 3. If T1 [respectively, T2] is a maximal split [respectively, maximal nonsplit] torus and
Qi∈ QTioV (Ω, S), then the unitary operators U i(g) such that

Qi(g · l)=Ui(g)Qi(l)Ui(g)∗ ∀l ∈ L(Ω), g ∈ Ti

permute the corresponding unlabeled projections ran Qi = {Qi(l) | l ∈ L(Ω)} (i = 1, 2). By Remark 1,
ran Q1 and ran Q2 are unitarily conjugate; representing them on a common Hilbert space, this
amounts to saying that we can always assume ran Q1 = ran Q2 ≡R (although of course Q1 ,Q2). In
this way, both the projective unitary groups ran Ui = {Ui(g) | g ∈ Ti} permute the same set of rank-1
projections R. However, Theorem 4 says that one can not relabel the elements of R in order to make
all the unitaries ran U1 ∪ ran U2 act as phase-space transformations. Equivalently, if we want to
regard one of the two unitary groups as a torus in SL(V ), with its natural action on the phase-space
lines L(Ω)'R, we cannot do the same with the other group.

V. MAXIMALLY INVARIANT WEYL MULTIPLIERS

Up to now, we have considered the existence problem for (G0 oV ) -covariant quadrature systems.
However, when the set QG0oV (Ω, S) is nonempty, we have neither investigated whether it is made
up of a unique equivalence class of quadratures, nor have we explicitly written down any of its
elements.

In this section, we fill this gap in the case where G0 ≡T is a maximal torus in even characteristic,
providing many examples of inequivalent elements in QToV (Ω, S). Moreover, for all these examples
we exhibit a unitary projective representation U of G=T o V yielding the covariance relation (2).

By Theorem 2 and Proposition 1, the equivalence classes of quadratures in the setQToV (Ω, S) are
in one-to-one correspondence with the T -invariant Weyl multipliers for the symplectic space (V,S). If
such a multiplier m is given, Section II E provides the construction of the corresponding quadrature
system in terms of m (see (5)). The main difficulty is then to write down an explicit expression for a
T -invariant Weyl multiplier.

Note that an explicit formula for the multiplier m also allows one to construct the projective
representation U of T yielding the T -covariance of Q. This follows from the next theorem.

Theorem 5 (Ref. 22, Theorem 8.5). In any characteristic, let T be a maximal torus, and
suppose Q ∈ QToV (Ω). Let Wo be the Weyl system associated with Q and centered at the point o ∈Ω
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such that GL(V ) · o= {o}, and let m be its Weyl multiplier. Then a possible choice for the projective
representation U of T appearing in (2) is

U(A)=
1
|F|

∑
u∈V

m(u, (A − I)−1u)Wo(u) ∀A ∈ T \ {I } . (11)

Proof. If T is nonsplit, this is Theorem 8.5 of Ref. 22. The proof of the latter result uses only
the two facts that A � I is invertible on V, and −I ∈ T . These facts are still true if T is split, hence the
same proof works without any change also in the split case. �

The operators Wo(u) appearing in Theorem 5 are explicitly given in formula (4), which again
only depends on the Weyl multiplier m associated with Q.

For the remaining part of the section, we then turn to the problem of characterizing the T -invariant
Weyl multipliers in characteristic p = 2. We remark that the present discussion is a refinement of
Ref. 22, Appendix B, which outlines how to find a T -invariant Weyl multiplier by averaging a
noninvariant one over T, but does not contain a compact formula for the result.

First of all, observe that, although in odd characteristic there is the natural choice of the Weyl
multiplier (6), which takes its values in the set of the p-roots of unity and is actually invariant with
respect to the whole group SL(V ), when p = 2, a more elaborate construction is required. The key
difference is that in the latter case there is no ±1-valued Weyl multiplier at all. Indeed, if m were such
a multiplier, then, for f1, f2 ∈ V with Tr S (f1, f2)= 1, we would get the contradiction

1=m(f1 + f2, f1 + f2)=m(f1 + f2, f1 + f2)m(f1, f2)2

=m(f1, f2 + f1 + f2)m(f2, f1 + f2)m(f1, f2)

=m(f1, f1)m(f2, f1 + f2)(−1)Tr S(f2,f1)m(f2, f1)

=−m(f2, f2 + f1)m(f2, f1)=−m(f2 + f2, f1)m(f2, f2)

=−1 .

Actually, in the even characteristic case the minimal possible choice of a Weyl multiplier is

m(u, v)= ig(u,v)

for some function g : V × V→Z4. The function g must clearly be a Z4-valued multiplier. Moreover,
properties (M.1) and (M.2) of a Weyl multiplier become as follows:

(M’.1) for any D ∈D, g(d1,d2) = 0 for all d1, d2 ∈D;

(M’.2) g(v, u) − g(u, v)= 2Tr S (u, v) for all u, v ∈ V , where the map z 7→ 2z goes from Z2 to Z4.

The additional condition that m is T -invariant then requires that g(Au, Av) = g(u, v) for some generator
A of T and all u, v ∈ V .

In order to construct g, we need the fact that in even characteristic there exists a linear basis
{ω1,ω2, . . . ,ωn} of F over Z2 such that Tr (ωiωj)= δi,j for all i, j ∈ {1, 2, . . . , n} (see Ref. 41, Theorem
4). After choosing such a basis, we also fix a sequence r1, r2, . . . , rn inZ4 with ri =±1. Then we define
the following map h :F→Z4:

h *
,

n∑
i=1

ziωi
+
-
=

n∑
i=1

riz
2
i ∀z1, . . . , zn ∈ Z2 .

Note that h is well defined, since the map z 7→ z2 is well defined from Z2 to Z4. Clearly, h(0) = 0.
Moreover, if α =

∑
i ziωi and β =

∑
i tiωi, then

h(α + β)= h(α) + h(β) + 2Tr αβ . (12)

The construction of g is slightly different in the two cases in which the maximal torus T is split or
nonsplit.

A. The split case

Let A be a generator of T with eigenvalues ξ, ξ−1 ∈ F, and let {e1,e2} be vectors of V such that
Ae1 = ξe1 and Ae2 = ξ

−1e2. Possibly rescaling e2, we can assume that {e1,e2} is a symplectic basis
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of (V,S). We use this basis to define the following two F-bilinear forms B+ and B
�

on V :

B+(u, v)=B−(v, u)= S (u, e1) S (v, e2) ∀u, v ∈ V .

Since B+(u,u) = B
�

(u,u) for all u ∈ V , the sum B+ + B
�

is a symplectic form on V. Because
(B+ + B

�

) (e1,e2) = 1, actually

B+ + B− = S .

Moreover, since S (Au, e1)= S
(
u, A−1e1

)
= ξ−1S (u, e1) and similarly S (Au, e2)= ξS (u, e2), the

bilinear forms B+ and B
�

are T -invariant, that is,

B+(Au, Av)=B+(u, v) and B−(Au, Av)=B−(u, v) ∀u, v ∈ V .

We then define a Z4-valued multiplier g0 on V, given by

g0(u, v)= 2Tr B+(u, v)= 2Tr B−(v, u) .

(The fact that g0 is a multiplier follows from its biadditivity property g0(u1 + u2,v) = g0(u1,v)
+ g0(u2,v) and g0(u,v1 + v2) = g0(u,v1) + g0(u,v2).) Condition (M’.2) holds for g0. However, to
make also condition (M’.1) satisfied, we need to introduce the equivalent Z4-valued multiplier g,
with

g(u, v)= h(B+(u + v, u + v)1/2) − h(B+(u, u)1/2) − h(B+(v, v)1/2) + g0(u, v) . (13)

Indeed, for all λ, µ ∈ F, by the property (12) of h,

g(λu, µu)= h((λ + µ)B+(u, u)1/2) − h(λB+(u, u)1/2) − h(µB+(u, u)1/2)

+2Tr λµB+(u, u)

= 0 .

Finally, from the analogous property of B+, it immediately follows that g(Au, Av) = g(u, v) for all
u, v ∈ V , hence g is T -invariant.

We have thus found the T -invariant Weyl multiplier m = ig. We can use the construction of
Section II E, with the symplectic basis {e1,e2} given by the above eigenbasis of A, in order to exhibit
the quadrature system Q ∈ QToV (Ω, S) having m as its associated multiplier. To this aim, it is enough
to evaluate

m(α1e1, α2e2)= ih((α1α2)1/2) (14)

and insert it into (4) and (5) to get

Q(o + v + Fu)φγ =
1
|F|

∑
λ∈F

ih(λ(α1α2)1/2)(−1)Trλ[α2(β1+γ)+α1β2]φγ+λα1

with u= α1e1 + α2e2, v= β1e1 + β2e2

with its associated centered Weyl system

Wo(α1e1 + α2e2)φγ = ih((α1α2)1/2)(−1)Trα2γφγ+α1 .

In order to determine the unitary operator U(A) yielding the T -covariance, we can either use (11) or
simply notice that U(A)φ0 = cφ0 for some scalar c ∈C, since U(A)Q(o + Fe2)=Q(o + Fe2)U(A)≡
cQ(o + Fe2) by T -covariance. On the other basis vectors,

U(A)φγ =U(A)Wo(γe1)φ0 =Wo(γAe1)U(A)φ0 = cWo(γξe1)φ0 = cφγξ .

U becomes an ordinary representation of T by setting c = 1.

B. The nonsplit case

Let A and ξ, ξ−1 be as in the previous case. Now, ξ, ξ−1 ∈ F̃\Fwith ξ−1 = ξ, and A is diagonalized
in the extension Ṽ = F̃ ⊗F V of V to the scalars F̃. Let e ∈ Ṽ be a nonzero vector such that Ae= ξe.
Then Ae=Ae= ξe, where we still denote by · the F̃-antilinear map on Ṽ which restricts to the identity
on V. The F-bilinear form S uniquely extends to a symplectic form on Ṽ . Note that S

(
u, v

)
= S (u, v).
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In particular, S
(
e, e

)
∈ F; hence, possibly rescaling both e and e by the factor S

(
e, e

)−1/2, we can
assume that {e, e} is a symplectic basis of (Ṽ , S). Now, as in the split case, we define the F̃-bilinear
forms on Ṽ ,

B+(u, v)=B−(v, u)= S (u, e) S
(
v, e

)
∀u, v ∈ Ṽ .

Again, B+(u,u) = B
�

(u,u) for all u ∈ Ṽ , B+ + B
�

= S, and the forms B+ and B
�

are T -invariant. Moreover,
although B+ and B

�

are F̃-valued bilinear forms, the corresponding quadratic forms restrict toF-valued
forms on V : B+(u, u)=B−(u, u) ∈ F for all u ∈ V . Let T̃r : F̃→Z2 be any Z2-linear extension of Tr to
F̃. (For example, if ζ is any element of F̃ \ F, we can set T̃r(α + βζ)=Tr α for all α, β ∈ F.) We then
define the following Z4-valued biadditive multiplier g0 on V :

g0(u, v)= 2T̃r B+(u, v)= 2T̃r B−(v, u) ∀u, v ∈ V

and its equivalent multiplier g as in formula (13). Since g0 satisfies condition (M’.2), so does g.
Moreover, g also fulfills (M’.1) and is T -invariant, the computation being the same as in the split
case. In conclusion, m = ig is a T -invariant Weyl multiplier on V.

As in Section V A, we are now going to explicitly exhibit the T oV -covariant quadrature system
Q ∈ QV (Ω, S, m) along the lines of Section II E. In the present case, we fix the following symplectic
basis {e1,e2} of V :

e1 = εe + εe, e2 = εe + εe with ε = (ξ + 1)−1/2 . (15)

Moreover, we choose the extension T̃r such that T̃r ε2 = 0. Then, with some manipulations (reported
in the Appendix),

m(α1e1, α2e2)= ih((α1α2)1/2)(−1)Tr
[
α1α2εε+(α1+α2)(α1α2εε)1/2

]
, (16)

m(α1e1 + α2e2, (A + I)−1(α1e1 + α2e2))=

= i−
[
h
(
α1(εε)1/2

)
+h

(
α2(εε)1/2

)
+h((α1α2)1/2)

]
(−1)Tr

[
α1α2εε+(α1+α2)(α1α2εε)1/2

]
. (17)

By (4) and (5),

Q(o + v + Fu)φγ =
1
|F|

∑
λ∈F

ih(λ(α1α2)1/2)

× (−1)Trλ
{
λ

[
α1α2εε+(α1+α2)(α1α2εε)1/2

]
+α2(β1+γ)+α1β2

}
φγ+λα1 ,

Wo(u)φγ = ih((α1α2)1/2)(−1)Tr
[
α1α2εε+(α1+α2)(α1α2εε)1/2+α2γ

]
φγ+α1

with u= α1e1 + α2e2 v= β1e1 + β2e2 .

Moreover, by (11),

U(A)φγ =
1
|F|

∑
α1,α2∈F

m(α1e1 + α2e2, (A + I)−1(α1e1 + α2e2))

×Wo(α1e1 + α2e2)φγ

=
1
|F|

∑
α1,α2∈F

i−
[
h
(
α1(εε)1/2

)
+h

(
α2(εε)1/2

)]
(−1)Trα2γφγ+α1 .

As a final consideration, observe that in both the split and nonsplit cases, our construction
provides a quite big amount of different T -invariant Weyl multipliers. Indeed, for a fixed choice of
the orthonormal basis {ω1,ω2, . . . ,ωn} of F over Z2, changing the sequence of signs r1, r2, . . . , rn

in the definition of h yields 2n different Weyl multipliers m; this can be seen by direct inspection of
(14) and (16). Consequently, the set QToV (Ω, S) contains at least 2n inequivalent quadratures. This
shows that in even characteristic, there exists a large degree of arbitrarity in the choice of a maximally
covariant quadrature system.
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VI. CONCLUSIONS

We have found all the extended symmetries of stabilizer MUBs in even prime-power dimensions
beyond the basic group V of phase-space translations. We have proved that only two inequivalent
such extensions are possible, namely, by means of either a split or a nonsplit torus T ⊂ SL(V ).
In particular, it turns out that both of the possibilities give rise to whole families of inequivalent
maximally symmetric stabilizer MUBs, contrasting with the case in odd prime-power dimensions,
where the maximal symmetry requirement points out a single class of stabilizer MUBs. For each
of the two extensions, we have focused on a particular family of inequivalent maximally symmetric
stabilizer MUBs, providing both the explict form of the MUBs (more precisely, of their associated
rank-1 projections that we named quadrature system) and the expression of the covariance operators.

In the applications, one is usually interested in finding the smallest groups of unitary operators
cycling all the bases in a given maximal set of MUBs.27–29,31,32 For maximally symmetric stabilizer
MUBs, this corresponds to requiring a maximal nonsplit torus as the extra symmetry group (see Ref.
22, Section 8), since split toruses do not cycle the two bases corresponding to the directions they keep
fixed.

As a final consideration, in our approach the symmetry properties of stabilizer MUBs are
essentially related to their labelings with the phase-space lines. Indeed, we stressed in Remarks
1 and 3 that, for any pair of V -covariant quadratures Q1 and Q2, the two sets of rank-1 projections
ran Qi = {Qi(l) | l ∈ L(Ω)} (i = 1, 2) are always unitarily conjugated, although of course Q1 and Q2

may not be equivalent in the sense of (1). Now, we essentially dealt with the problem of how to
arrange the phase-space labeling of stabilizer MUBs in order to make them “as covariant as possible”
under the natural symmetries of the phase-space. Our definition of covariance (actually, the only
possible one) is expressed by (2). However, as pointed out in Ref. 22, Remark 7.8, the operators U(g)
satisfying (2) do not exhaust all unitaries preserving the (unlabeled) set of projections ran Q of some
Q ∈ QG0oV (Ω). In fact, the full Clifford transform group defined in Refs. 42 and 43 still leaves the set
ran Q invariant,23,31,33,34 although its action on MUBs cannot be related to any phase-space structure
by Theorem 4.
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APPENDIX: AUXILIARY CALCULATIONS

Here we provide the explicit calculations leading to (16) and (17). For the Z4-valued multiplier
g found in Section V B, in the basis (15) and for α1, α2 ∈ F, we have

g(α1e1, α2e2)= h
( [

S (α1e1 + α2e2, e) S
(
α1e1 + α2e2, e

)]1/2
)

− h
( [

S (α1e1, e) S
(
α1e1, e

)]1/2
)
− h

( [
S (α2e2, e) S

(
α2e2, e

)]1/2
)

+ 2T̃r S (α1e1, e) S
(
α2e2, e

)
= h

( [
(α1ε + α2ε)(α1ε + α2ε)

]1/2
)

− h
(
α1(εε)1/2

)
− h

(
α2(εε)1/2

)
+ 2T̃r α1α2ε

2

= h
( [

(α2
1 + α

2
2)εε + α1α2

]1/2
)

because ε2 + ε2 = 1

− h
(
α1(εε)1/2

)
− h

(
α2(εε)1/2

)
because T̃r ε2 = 0

= h
(
(α1 + α2)(εε)1/2 + (α1α2)1/2

)
by Z2-linearity of · 1/2

− h
(
α1(εε)1/2

)
− h

(
α2(εε)1/2

)
= h

(
(α1α2)1/2

)
+ 2Tr

[
α1α2εε + (α1 + α2)(α1α2εε)1/2

]
by (12).
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This proves (16). Concerning (17),

g(α1e1 + α2e2, (A + I)−1(α1e1 + α2e2))=

= g(αe + αe, (A + I)−1(αe + αe)) with α = α1ε + α2ε

= g(αe + αe, ε2αe + ε2αe)

= h
( [

S
(
(1 + ε2)αe + (1 + ε2)αe, e

)
S

(
(1 + ε2)αe + (1 + ε2)αe, e

)]1/2
)

− h
( [

S
(
αe + αe, e

)
S

(
αe + αe, e

)]1/2
)

− h
( [

S
(
ε2αe + ε2αe, e

)
S

(
ε2αe + ε2αe, e

)]1/2
)

= h
( [

(1 + ε2)α(1 + ε2)α
]1/2

)
− h

(
(αα)1/2

)
− h

((
ε2αε2α

)1/2
)

=−h
(
(αα)1/2

)
because ε2 + ε2 = 1

=−h
( [

(α2
1 + α

2
2)εε + α1α2

]1/2
)

because ε2 + ε2 = 1

=−h
(
(α1 + α2)(εε)1/2 + (α1α2)1/2

)
by Z2-linearity of · 1/2

=−
[
h
(
α1(εε)1/2

)
+ h

(
α2(εε)1/2

)
+ h

(
(α1α2)1/2

)]

+ 2Tr
[
α1α2εε + (α1 + α2)(α1α2εε)1/2

]
by (12)

which gives (17).
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