1,095 research outputs found
Image restoration using the Q-Ising spin glass
We investigate static and dynamic properties of gray-scale image restoration
(GSIR) by making use of the Q-Ising spin glass model, whose ladder symmetry
allows to take in account the distance between two spins. We thus give an
explicit expression of the Hamming distance between the original and restored
images as a function of the hyper-parameters in the mean field limit. Finally,
numerical simulations for real-world pictures are carried out to prove the
efficiency of our model.Comment: 27pages, 13figures, revte
Human-in-the-loop methods for occupant-centric building design and operation
A comfortable indoor environment should be one of the main services buildings provide. However, technical building systems are typically designed and operated according to fixed set-point temperatures determined by the ‘one-size-fits-all’ principle assuming universal thermal comfort requirements, which has been questioned in the last fifty years. Designing and implementing comfortable set-point modulations that consider occupant feedback would be beneficial in terms of increasing comfort, potentially reduce energy consumption and significantly support the clean energy transition. An exploratory study aimed at predicting the thermal preferences of human subjects exposed to a dynamic thermal environment is presented. Using data acquired from a laboratory experiment where subjects were exposed to precisely controlled thermal ramps in an ‘office-like’ climatic chamber, cluster-specific and population-averaged methods are designed to handle the group-level residual during the prediction of the thermal preference votes. The results show that both approaches are valid strategies for modelling thermal preference votes and are effective in supporting a concrete occupant-centric building design and the building's operation. Furthermore, the population-averaged approach is suitable for the occupant-centric building design phase, where the target is an ‘average’ occupant. The cluster-specific method is best suited to meet the needs of a specific occupant and is suitable for implementation in the operational phase of the building
Multi-State Image Restoration by Transmission of Bit-Decomposed Data
We report on the restoration of gray-scale image when it is decomposed into a
binary form before transmission. We assume that a gray-scale image expressed by
a set of Q-Ising spins is first decomposed into an expression using Ising
(binary) spins by means of the threshold division, namely, we produce (Q-1)
binary Ising spins from a Q-Ising spin by the function F(\sigma_i - m) = 1 if
the input data \sigma_i \in {0,.....,Q-1} is \sigma_i \geq m and 0 otherwise,
where m \in {1,....,Q-1} is the threshold value. The effects of noise are
different from the case where the raw Q-Ising values are sent. We investigate
which is more effective to use the binary data for transmission or to send the
raw Q-Ising values. By using the mean-field model, we first analyze the
performance of our method quantitatively. Then we obtain the static and
dynamical properties of restoration using the bit-decomposed data. In order to
investigate what kind of original picture is efficiently restored by our
method, the standard image in two dimensions is simulated by the mean-field
annealing, and we compare the performance of our method with that using the
Q-Ising form. We show that our method is more efficient than the one using the
Q-Ising form when the original picture has large parts in which the nearest
neighboring pixels take close values.Comment: latex 24 pages using REVTEX, 10 figures, 4 table
Application of the quantum spin glass theory to image restoration
Quantum fluctuation is introduced into the Markov random fields (MRF's) model
for image restoration in the context of Bayesian approach. We investigate the
dependence of the quantum fluctuation on the quality of BW image restoration by
making use of statistical mechanics. We find that the maximum posterior
marginal (MPM) estimate based on the quantum fluctuation gives a fine
restoration in comparison with the maximum a posterior (MAP) estimate or the
thermal fluctuation based MPM estimate.Comment: 19 pages, 9 figures, 1 table, RevTe
Functional renormalization group at large N for random manifolds
We introduce a method, based on an exact calculation of the effective action
at large N, to bridge the gap between mean field theory and renormalization in
complex systems. We apply it to a d-dimensional manifold in a random potential
for large embedding space dimension N. This yields a functional renormalization
group equation valid for any d, which contains both the O(epsilon=4-d) results
of Balents-Fisher and some of the non-trivial results of the Mezard-Parisi
solution thus shedding light on both. Corrections are computed at order O(1/N).
Applications to the problems of KPZ, random field and mode coupling in glasses
are mentioned
Double-Lepton Polarization Asymmetries and Branching Ratio of the B\rar \gamma l^+ l^- transition in Universal Extra Dimension
We study the radiative dileptonic B \rar \gamma l^+ l^- transition in the
presence of a universal extra dimension in the Applequist-Cheng-Dobrescu model.
In particular, using the corresponding form factors calculated via light cone
QCD sum rules, we analyze the branching ratio and double lepton polarization
asymmetries related to this channel and compare the results with the
predictions of the standard model. We show how the results deviate from
predictions of the standard model at lower values of the compactification
factor () of extra dimension.Comment: 20 Pages and 8 Figure
Thermodynamic Properties of Holographic Multiquark and the Multiquark Star
We study thermodynamic properties of the multiquark nuclear matter. The
dependence of the equation of state on the colour charges is explored both
analytically and numerically in the limits where the baryon density is small
and large at fixed temperature between the gluon deconfinement and chiral
symmetry restoration. The gravitational stability of the hypothetical
multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation.
Since the equations of state of the multiquarks can be well approximated by
different power laws for small and large density, the content of the multiquark
stars has the core and crust structure. We found that most of the mass of the
star comes from the crust region where the density is relatively small. The
mass limit of the multiquark star is determined as well as its relation to the
star radius. For typical energy density scale of ,
the converging mass and radius of the hypothetical multiquark star in the limit
of large central density are approximately solar mass and 15-27 km.
The adiabatic index and sound speed distributions of the multiquark matter in
the star are also calculated and discussed. The sound speed never exceeds the
speed of light and the multiquark matters are thus compressible even at high
density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio
Double-Lepton Polarization Asymmetries and Branching Ratio in B \rar K_{0}^{*}(1430) l^+ l^- transition from Universal Extra Dimension Model
We investigate the B \rar K_{0}^{*}(1430) l^+ l^- transition in the
Applequist-Cheng-Dobrescu model in the presence of a universal extra dimension.
In particular, we calculate double lepton polarization asymmetries and
branching ratio related to this channel and compare the obtained results with
the predictions of the standard model. Our analysis of the considered
observables in terms of radius of the compactified extra-dimension as the
new parameter of the model show a considerable discrepancy between the
predictions of two models in low values.Comment: 12 Pages, 15 Figures and 1 Tabl
Rare B Decays with a HyperCP Particle of Spin One
In light of recent experimental information from the CLEO, BaBar, KTeV, and
Belle collaborations, we investigate some consequences of the possibility that
a light spin-one particle is responsible for the three Sigma^+ -> p mu^+ mu^-
events observed by the HyperCP experiment. In particular, allowing the new
particle to have both vector and axial-vector couplings to ordinary fermions,
we systematically study its contributions to various processes involving
b-flavored mesons, including B-Bbar mixing as well as leptonic, inclusive, and
exclusive B decays. Using the latest experimental data, we extract bounds on
its couplings and subsequently estimate upper limits for the branching ratios
of a number of B decays with the new particle. This can serve to guide
experimental searches for the particle in order to help confirm or refute its
existence.Comment: 17 pages, 3 figures; discussion on spin-0 case modified, few errors
corrected, main conclusions unchange
- …