1,095 research outputs found

    Image restoration using the Q-Ising spin glass

    Get PDF
    We investigate static and dynamic properties of gray-scale image restoration (GSIR) by making use of the Q-Ising spin glass model, whose ladder symmetry allows to take in account the distance between two spins. We thus give an explicit expression of the Hamming distance between the original and restored images as a function of the hyper-parameters in the mean field limit. Finally, numerical simulations for real-world pictures are carried out to prove the efficiency of our model.Comment: 27pages, 13figures, revte

    Human-in-the-loop methods for occupant-centric building design and operation

    Get PDF
    A comfortable indoor environment should be one of the main services buildings provide. However, technical building systems are typically designed and operated according to fixed set-point temperatures determined by the ‘one-size-fits-all’ principle assuming universal thermal comfort requirements, which has been questioned in the last fifty years. Designing and implementing comfortable set-point modulations that consider occupant feedback would be beneficial in terms of increasing comfort, potentially reduce energy consumption and significantly support the clean energy transition. An exploratory study aimed at predicting the thermal preferences of human subjects exposed to a dynamic thermal environment is presented. Using data acquired from a laboratory experiment where subjects were exposed to precisely controlled thermal ramps in an ‘office-like’ climatic chamber, cluster-specific and population-averaged methods are designed to handle the group-level residual during the prediction of the thermal preference votes. The results show that both approaches are valid strategies for modelling thermal preference votes and are effective in supporting a concrete occupant-centric building design and the building's operation. Furthermore, the population-averaged approach is suitable for the occupant-centric building design phase, where the target is an ‘average’ occupant. The cluster-specific method is best suited to meet the needs of a specific occupant and is suitable for implementation in the operational phase of the building

    Multi-State Image Restoration by Transmission of Bit-Decomposed Data

    Get PDF
    We report on the restoration of gray-scale image when it is decomposed into a binary form before transmission. We assume that a gray-scale image expressed by a set of Q-Ising spins is first decomposed into an expression using Ising (binary) spins by means of the threshold division, namely, we produce (Q-1) binary Ising spins from a Q-Ising spin by the function F(\sigma_i - m) = 1 if the input data \sigma_i \in {0,.....,Q-1} is \sigma_i \geq m and 0 otherwise, where m \in {1,....,Q-1} is the threshold value. The effects of noise are different from the case where the raw Q-Ising values are sent. We investigate which is more effective to use the binary data for transmission or to send the raw Q-Ising values. By using the mean-field model, we first analyze the performance of our method quantitatively. Then we obtain the static and dynamical properties of restoration using the bit-decomposed data. In order to investigate what kind of original picture is efficiently restored by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we compare the performance of our method with that using the Q-Ising form. We show that our method is more efficient than the one using the Q-Ising form when the original picture has large parts in which the nearest neighboring pixels take close values.Comment: latex 24 pages using REVTEX, 10 figures, 4 table

    Application of the quantum spin glass theory to image restoration

    Get PDF
    Quantum fluctuation is introduced into the Markov random fields (MRF's) model for image restoration in the context of Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of BW image restoration by making use of statistical mechanics. We find that the maximum posterior marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the maximum a posterior (MAP) estimate or the thermal fluctuation based MPM estimate.Comment: 19 pages, 9 figures, 1 table, RevTe

    Functional renormalization group at large N for random manifolds

    Full text link
    We introduce a method, based on an exact calculation of the effective action at large N, to bridge the gap between mean field theory and renormalization in complex systems. We apply it to a d-dimensional manifold in a random potential for large embedding space dimension N. This yields a functional renormalization group equation valid for any d, which contains both the O(epsilon=4-d) results of Balents-Fisher and some of the non-trivial results of the Mezard-Parisi solution thus shedding light on both. Corrections are computed at order O(1/N). Applications to the problems of KPZ, random field and mode coupling in glasses are mentioned

    Double-Lepton Polarization Asymmetries and Branching Ratio of the B\rar \gamma l^+ l^- transition in Universal Extra Dimension

    Get PDF
    We study the radiative dileptonic B \rar \gamma l^+ l^- transition in the presence of a universal extra dimension in the Applequist-Cheng-Dobrescu model. In particular, using the corresponding form factors calculated via light cone QCD sum rules, we analyze the branching ratio and double lepton polarization asymmetries related to this channel and compare the results with the predictions of the standard model. We show how the results deviate from predictions of the standard model at lower values of the compactification factor (1/R1/R ) of extra dimension.Comment: 20 Pages and 8 Figure

    Thermodynamic Properties of Holographic Multiquark and the Multiquark Star

    Full text link
    We study thermodynamic properties of the multiquark nuclear matter. The dependence of the equation of state on the colour charges is explored both analytically and numerically in the limits where the baryon density is small and large at fixed temperature between the gluon deconfinement and chiral symmetry restoration. The gravitational stability of the hypothetical multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks can be well approximated by different power laws for small and large density, the content of the multiquark stars has the core and crust structure. We found that most of the mass of the star comes from the crust region where the density is relatively small. The mass limit of the multiquark star is determined as well as its relation to the star radius. For typical energy density scale of 10GeV/fm310\text{GeV}/\text{fm}^{3}, the converging mass and radius of the hypothetical multiquark star in the limit of large central density are approximately 2.63.92.6-3.9 solar mass and 15-27 km. The adiabatic index and sound speed distributions of the multiquark matter in the star are also calculated and discussed. The sound speed never exceeds the speed of light and the multiquark matters are thus compressible even at high density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio

    Double-Lepton Polarization Asymmetries and Branching Ratio in B \rar K_{0}^{*}(1430) l^+ l^- transition from Universal Extra Dimension Model

    Get PDF
    We investigate the B \rar K_{0}^{*}(1430) l^+ l^- transition in the Applequist-Cheng-Dobrescu model in the presence of a universal extra dimension. In particular, we calculate double lepton polarization asymmetries and branching ratio related to this channel and compare the obtained results with the predictions of the standard model. Our analysis of the considered observables in terms of radius RR of the compactified extra-dimension as the new parameter of the model show a considerable discrepancy between the predictions of two models in low 1R\frac{1}{R} values.Comment: 12 Pages, 15 Figures and 1 Tabl

    Rare B Decays with a HyperCP Particle of Spin One

    Full text link
    In light of recent experimental information from the CLEO, BaBar, KTeV, and Belle collaborations, we investigate some consequences of the possibility that a light spin-one particle is responsible for the three Sigma^+ -> p mu^+ mu^- events observed by the HyperCP experiment. In particular, allowing the new particle to have both vector and axial-vector couplings to ordinary fermions, we systematically study its contributions to various processes involving b-flavored mesons, including B-Bbar mixing as well as leptonic, inclusive, and exclusive B decays. Using the latest experimental data, we extract bounds on its couplings and subsequently estimate upper limits for the branching ratios of a number of B decays with the new particle. This can serve to guide experimental searches for the particle in order to help confirm or refute its existence.Comment: 17 pages, 3 figures; discussion on spin-0 case modified, few errors corrected, main conclusions unchange
    corecore