We study thermodynamic properties of the multiquark nuclear matter. The
dependence of the equation of state on the colour charges is explored both
analytically and numerically in the limits where the baryon density is small
and large at fixed temperature between the gluon deconfinement and chiral
symmetry restoration. The gravitational stability of the hypothetical
multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation.
Since the equations of state of the multiquarks can be well approximated by
different power laws for small and large density, the content of the multiquark
stars has the core and crust structure. We found that most of the mass of the
star comes from the crust region where the density is relatively small. The
mass limit of the multiquark star is determined as well as its relation to the
star radius. For typical energy density scale of 10GeV/fm3,
the converging mass and radius of the hypothetical multiquark star in the limit
of large central density are approximately 2.6−3.9 solar mass and 15-27 km.
The adiabatic index and sound speed distributions of the multiquark matter in
the star are also calculated and discussed. The sound speed never exceeds the
speed of light and the multiquark matters are thus compressible even at high
density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio