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Image restoration using theQ-Ising spin glass
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We investigate static and dynamic properties of gray-scale image restoration by making us€asitip
spin glass model, whose ladder symmetry allows us to take in account the distance between two spins. We thus
give an explicit expression of the Hamming distance between the original and restored images as a function of
the hyperparameters in the mean field limit. Finally, numerical simulations for real-world pictures are carried
out to prove the efficiency of our model.

DOI: 10.1103/PhysReVvE.64.036121 PACS nunier02.50—r, 05.20-y, 05.50:+q

I. INTRODUCTION tion is a Gaussign We thus investigate the performance
In the last decade, the problem of the image restoratiofboth static and dynamiaf the gray-scaled image restora-
(IR) has been successfully investigated by means of tection using theQ-Ising model[7], whoseladder symmetry
niques borrowed from the field of statistical mechanics.takes into account the distance between the spin values and

Among them, it is certainly worth mentioning the maximum Will allow us to say, for instance, thap=3 is better than
posterior marginal (MPM) and maximum a posteriori Q=5 if the right pixel corresponds tQ=2. The analytical

L o . . expressions are obtained in so-called mean field [t
(MAP) estimations. From the statistical mechanical point OfWhere each spin interacts with all the others. The efficiency

ture. In simple words, the reconstruction of a corrupted im- - P ;
. . ’ ) . .~ model system using the infinite range model and explain the
age is achieved by balancing the strength of a linear field y 9 9 P

hich o5 the inf i fthe d ded bict d eneral formulation of the MPM estimation. In this paper, we
which carries the information ot the degrade p|c ure, an , focus our attention on the averaged case performance, in-
ferromagnetic term that builds relatively large “one-color

i . stead of the performance for a specific chdidata. There-
cIusFers(beIow_ the transition tempergtt)rethus Suppressing ore, in Sec. 11 B, we define the average of the macroscopic
the |stcr>1lat(|\eﬂcl\glxe![§ th?ught to .bte Poif]e- F'rqm. th'|[§ poT:ho physical quantities over the data distribution. In Sec. 11 C we
View, He it es |mta lon c;on5|s S Itn € rr;:r:clmltzha lon o degive an analytical expression of the Hamming distance by
same Hamiltonian at zero tempera (search for € 9round - giatic calculation in the mean-field limit. In Sec. 11D we
statg, with an appropriate s_calln_g of the random field. Thederive the dynamical equations with respect to the macro-
gdvanta_ge:[ zf thtelel\:’/lM estlrgtatli)nlove:j t.?e M’?‘P one ha copic quantities, namely, the magnetization and the Ham-

een pointed out by Marroqu al.[1] and its periormance ming distance in terms of microscopic master equation. In
has belen'|nve.st|gated by several qutﬁdns]. In this direc- Sec. lll, in order to test the usefulness of Rdsing model
tion, N|sh|mqr| and Wond4], by unlfyl_ng IR problem and or the GSIR, we carry out Monte Carlo simulations for real-
error-correcting code theory under a single framework, foun orld pictures withQ=8 gray-scale levels. In Sec. IV, we
that the optimal recover.ing. of an image is o_btaineq ata ﬁr"teshow an iterative algorithm based on the mean-field abproxi-
temperaturéknown asNishimori temperaturén the field of

atistical haniésThei its h icted mation, whose convergence is much faster than that of the
statistical mechanigs 1 eir resulls, however, Were restricled yy, o carlo simulations. The last section is left for summary
to the usual binary spin modelssing), i.e., black or white and discussion

images in IR jargon, and many questions about the properties

of the gray-scale image restoratig@®SIR) processes still Il. THE INFINITE RANGE  Q-ISING SPIN GLASS MODEL
remain open. A first attempt to generalizg to gray-level _

pictures has been carried out by the auti&isby mapping A. General formulation

the set of the pixels ontQ-state(chiral) Potts spins in the A Q-gray-scale levels image is nothing but a set of pixels

the Potts Hamiltoniarthypertetrahedronreduces the prob- integer variables € {1,2, . . . Q}. Without loss of generality,

lem to a two-statdike system, where only one bit turns out et our image be generated by the following prior distribu-
to be right, and all the others are equivalently wrong withoutjgn:

any regard of the whole gray-level scale. Whereas this turns

out to be an efficient method in the presence of white noise 1 Bs )

(each spin is flipped to any of th@ values with equal prob- Ps({f})zgex T2 4 (&—&)7,

ability), things may be different from a transmission channel s .

affected by Gaussian noigthe spin-flip probability distribu-  where Z is the usual normalization constant that is given by

1063-651X/2001/6¢8)/03612118)/$20.00 64 036121-1 ©2001 The American Physical Society
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where we defined the effective Hamiltoniafy; and the nor-
malization constangy as

Z=Try exr{— %5 ; (&—£)?.

In the spirit of statistical mechanics, we want to regard this Her=h2, (o— 1)+ Ba > (Ui_(,j)z )
picture as a snapshot of a spin system described by the i 2 9
HamiltonianH = (1/2)%;; (& — gj)z at a specific temperature
Tszﬁgl. Sending our image through a noisy channel will and
cause the flipping of some pixels to different values. For this Z4=Tr{yy eXH — Herl,
degrading process, we assume that each gixehanges its
state tor; independently. Then, the degraded pixeis given  respectively. The parametets and 84 appearing in the
by the following conditional probability: Hamiltonian He [Eq. (2)] are referred to asiyperparam-
etersand we cannot mention about the true values of them
1 5 beforehand. This posterior distributidd({o}|{7}) is con-
P(Tilgi):ma exr{_z_az(ﬂ_mgi) 1 structed in terms of a likelihood({7}|{o}) and a prior
7 T probability P({c}) as we saw in Eq(1). P({7}|{c}) and
This means that after the transmission, the receiver observéy{c}) are given by
7; that was violated from scaled original imaggé; with a

standard deviatiom.. This kind of damaging process is re- ex;{ _hz (11— 07)2
ferred to asGaussian channe{GC). Due to the indepen- i
dence of noisy process on each pixel, a sequence of original P{r}{o})=
pixel {£} is corrupted by the GC as Trg ex;{ —hEi (1i—07)?
P({r{gh=11 P(x[&) and
1 L s , ex;{—(ﬂd/a; (0= 0))?
(\/E&T)Nex ZaE : (7= 70&)°|. P({o})= .
_ o o) ex;{ ~(Bd2) 2 (i 0y)?
In the context of Bayesian approach, the posterior distribu- |
tion reads . . . -
The prior probability reflects our assumption on the original
PH{a}l{r}) image that the picture should be locally smooth. As briefly
mentioned in the introduction, the MAP estimation consists
_ P{rl{ehP{a}) in maximizing the above posterior probabili§({c}|{7}),
C Ty PE{ahP({o}) that is finding the ground stafgr} of the effective Hamil-

tonianHe and regarding it as an estimate of true pixels.
On the other hand, in the context of the MPM estimation,
we first consider the following marginal distribution:

exp[—hEi <oi—ri>2—<ﬁd/2); (07— 0))?

Trig) eXF{ —h2> (o= 1)?= (B4l 2 (0= 0))?
i 1]

P(oil{oh = 2 P({atl{r)

EM’ (1) and then we calculate the local magnetization that is given
d by

Q Tf{o}ffio;m exl{—hﬁi: (Ti—ai)z—(ﬂd/Z)%} (07— 0))?
o)y = 2, oiPlalir))= |

g =

Tr{u’} eXF{ _hE (Ti_a'i)z—(ﬁd/Z)Z (a-i_a.j)Z
i ]

i - —0)%— 2
- Mo ex;{ hEi (n=a) ('Bdlz)iZj (@i~ a)) _ Trioy o exid — Her] 3
o) ex;{—hz (Ti_Ui)Z—(Bd/Z)Z (Ui_aj)z Trioy exd — Heg]
i i
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Using the above expectation value, we regard the estimate of p({7},{J}|{o})
the original pixel&; as Q((oi)g, n), where function) is

represented by a sum of step functid®éx) [O(x)=1 for ex;{—(ﬂJ/Z)E (Ji__a-io-_)Z_hz (17— 07)?
x=0 and®(x)=0 for x<0]; TR J i

Z

2k—1
with

Q
Q(<Ui>ﬂd,h)Ek§1 k[®(<0i>ﬁd,h_ —

2k+1
—O(oi)pg 5

Z(_ETI‘{T}’{J}GXF{—%Z (\]ij—o'ig-j)Z_hEi (Ti—ai)z},

1]

The natural quantity measuring the quality of our restoration, nare we introduced another hyperparamgigr Using the

process,_viz., thg distance bgtwegn the original and the res;me way as Eq1), we rewrite the posterior probability as
covered image, is the Hamming distar(isgquare error

1, : P43 = el
Du(Ba.M =5y 2 L& Q(oi))g, ), Tr{ o) €XH — Her]

whose value depends upon the hyperparametegy, ap- with the following effective Hamiltonian

pearing in the effective Hamiltonial ;. At this stage, it is 8,

important to bear in mind that the MAP estimate is recovered Heﬁ:7 2 (Jij—0i0))*— hz (ri—0)?

as the limitBq— oo (keeping their ratio constakt=h/g) in g '

Eq. (3). Encouraged by the results ] and[5], we expect B

that more data fed through the noisy channel improve the _d > (gi—0y)>. (5)
quality of the restored image, since the receiver will have 2 9

more information about the original image. Especially, in-

spired by theory of error-correcting codes, in addition to the B. Averaged case performance
transmission of a sequence of pixglg=(&q, ... ,&y) we . .
also send the products of two original pixels, namely, Given the degraded version of data, naméty, and{J},

arbitrary macroscopic physical quantiff{c},{7},{J}) is

&igj, (=1, ... Nii#j). Of course, we can use another .- 1-ceq'in terms of the average over the posterior distri-

kind of extra term like €,£)? or & &,; we use heré&;¢; as :
a simplest form. In Sec. ill, as another candidate, we test th@Ution P{o}l{7},{3}) as

efficiency of the extra information &-—¢)? (i,

=1,... N;i#]), namely, square distances of two pixels by {f{{o}.{7}.{I})) g, n=Troy f{o} A1 {IDPH {7}
Monte Carlo simulations.

For this simplest choice of extra information, each prod- _ Trgy f({o} {7}, {J})e Ter ©
uct &;¢; is also corrupted independently by the following B Tr, }e—Heﬂ '
GC: 7

In the practical applications, for a given dafta},{J}, we
4) estimateith pixel, for example, by means of the MPM esti-

mate as sgr{bi)ﬁd,h). Obviously, this estimate depends on

the data{7},{J}. However, our interest here is not the per-

namely, the degraded version of the produgt deviated ~formance for a specific data sgt},{J} but the averaged

’

1 1
P(Jij|§i§j):\/2——ﬂ_ajeXF{ - Z_az(‘]ij —Jo&i&))?

J

from the scaled original datdy& £ with width a,. For this ~ Performance. — Therefore, ~ when  the  quantity
degrading process, we modify a likelihod({7}|[{a}) in  (F{oh{7}.{I}))s,.n depends on the observed détd.{J},
Eq. (1) as we should average them out by the distribution

1 s
exp[ "o 2 Qi o)~ (V2D 2 (= 6)*- % 2 <5i—§j>21
J | | |

P({7}{J =
{7 {3{e) : — . :
Tri.0.060 9 ~ 5 2 (3= oi€)*~ (V2D 2 (=€)~ 5 2 (6-€)
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to obtain the averaged performance of our method. Thus, the (a)
averaged macroscopic quantity is given by mo
3 Ry T T T
[(F ot {71 {ID) s, hlia 10008
Trioy (o}, {7}, {9}e "er os| ]
{o} \
=Try, P({7},{J . A\
{1438 Triye et {3
(7) 2 ‘::::
Using this definition, the performance of image restoration is
measured by the following averaged Hamming distance be- 151 i
tween the original image; and the restored one, that is,
Q((ai)g,.n) as
! o] 0.2 0.4 0.6 0.8 1
(V2N D [6-0((a)g, w12 "er (b) Ts
Du=Tr7 1948
o Try € Tteff
{o} 4 m(_)\ . . .
X PR L {IHED. ®)
35 3 -

In the next two subsections, we investigate the performance
of image restoration in terms of this Hamming distaige.

We focus our analysis not only on the static properties but
also the dynamic properties of image restoration.

C. Static properties It
In this subsection, we consider the static properties of 15 | .
image restoration. First of all, we should investigate the
properties of original image, that is to say, the properties of o p s >
the ferromagneti€-Ising model. However, it is quite hard to Ts

calculate the partition function or the other physical quanti-

ties for our spin system defined on two-dimensional square FIG. 1. The magnetization of the original image for the case of

lattice analytically. Therefore, in this paper, we investigateQ=3 (& and Q=4 (b). The solid lines correspond to globally

the infinite range version of our model system and calculat&table solutions.

the macroscopic physical quantities analytically. Then, the

infinite range version of the prior distribution leads to with the same probability 1/3 and thus the corresponding
magnetization ismg=(1+2+3)/3=2. The transition be-

1 Bs 5 tween the ferromagnetic phase and the paramagnetic phase
PS({g})—Zex " 2N ; (&=&)7, occurs afT,~1.0. In the same way as the caseQ# 3, for

Q=4, the four statemy=1, 2, 3, and 4 are degenerated at

where we should notice that the argument of the exponentials=0, and the middle two states,=2 and 3 become glo-

should be divided bW in order to take a proper thermody- bally stable forTs>0 (my=1,4 are degenerated locally

namic limit. For this rather artificial model, we easily obtain stable stateés The paramagnetic state is specified by the

the magnetization at some temperatdig= 3. ') as fol- magnetizatiormy=(1+2+3+4)/4=2.5 and the ferro-para

lows: transition occurs at.~1.78. For this original image, in or-
) der to investigate the average performance of the MPM es-

I 1 D g:Trgf exp(2moBsé— Bst”) timation, we should calculat®y, in terms of statistical me-

07 N4 © Z ' chanics of the spin systerflo} with quenched disorder

{7}, {3}, and{¢&}. For this purpose, we calculate the aver-
We should keep in mind that for the infinite ran@elsing  aged free energy of the system describedHy [Eg. (5)]
model, the properties of the macroscopic quantities of thavith assistance of the replica method:;
system are completely determined imy. In Fig. 1, we plot
the magnetizatiom, as a function of source temperaturg n — lim [Zn]{r},{a},{g}— 1
for Q=3 andQ=4. We see that for th© =3 case the three LN 2170148 nLO
statesmy=1, 2, and 3 are degeneratedTat=0, while at
finite temperature the middle state,=2 becomes globally with
stable andny=1,3 are degenerated locally stable. At high-
temperature regim@,—~, each spin takes all the values Z=Tri5) expl— BHes),

036121-4
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which consist in replacing the quenched average of a singlgptimal decoding temperatuﬂéfpt)sz. The same relation

system with an annealed averagenagéplicated system@det-

turns out to be satisfied for black or white [R] (which

ting n—0 at the enyl Assuming a replica symmetric ansatz corresponds t@Q=2), differently from GSIR by the Potts
and by using the saddle point method, the order parametefodel[5]. In order to compare the performance of the MPM

are given by the following coupled equations:

o0

m=[{a{") g, hliz.131.06 = TreQ(6) f_wDX B(x,€), (9)

t=[&(01) g, nlia 103,46 = Tre £Q(E) f:DX B(x,é),
(10

q= [(Uia>ﬁd ,h<0'i3>,8d a4

=Try Q(¢) J’:DX[B(X,g)]Z, (12)

w=[((0)?) g, nli7. (03,48 =Tre Q&) f,r DxC(x,$),
(12)
where we should remember that the brackets )z, and

[+ ln.q0.5 are defined by Eq(6) and Eq.(7), respec-

tively. In the above expressionBx= (dx/\2m)e ¥ is the
usual Gaussian measure and we define

Tr, cexgUo—Vo?]
Tr,exfUo—Vea?]

B(x,&)=

Tr, o?exdUo—Vo?]

C 6=
(x.8) Tr,exdUo—Vo?]
exp(2moBsé— Bs?)
o)== ;fﬁs)ﬁ ,
with
U/2=(moh+ B3Jot) é+mpBy+xy/(ah)?+(a;8;)%q,
V=h+ Bq+ B3w.

Using the same method as the derivation of the order para
eters, the averaged Hamming distance @).is calculated
and reads

DBy 1) =Tr; Q(8) [ DXIE- 0B

estimate with that of the MAP one, we first investigate the
scaled fieldH=h/B4 dependence of the MAP estimate. The
MAP estimate is obtained by controlling the temperature as
T4— 0 with keeping the scaled field constant. Therefore,
the Hamming distance for the MAP estimate should depend
on H. In Fig. 4a), we plot the Hamming distance of the
MAP estimate as a function dfl. In this figure, we sefQ

=3, T¢,=0.75, anda,= 7o=1.0. We see that the Hamming
distance takes its minimum aHq,= 70/2a§,85= 0.375,
namely,

Dy(Tg=0H)=Dy(Tq=0,70/2aBs).

This optimal value of the scaled field=h/g, is obtained
when we set P({7}[{&})=P({7}[{c}) and Py({})
=Py({0}), that is to say,B4= s and h=r7¢/2aZ. In Fig.
4(b), we increase the temperatufg keepingH=H and
plot the Hamming distanc®,(Tq4,Hop) as a function of
Tq. This figure shows thaD ,(T4,Hp) takes its maximum
at Ty=T,=0.75. Therefore, we conclude that the MPM es-
timate achieves the lowest Hamming distance that cannot be
obtained by the MAP estimation. In Fig(k}, we plot the
Dy(Tq4,H) for several values ofl. From this figure, we see
that as long as we choosd so as to satisfyH=H
=70/2afﬂs, the minimum value of the Hamming distance
does not change.

In the limit of Ty— o, each pixel takes;=1,2,3 with the
same probability 1/3, and the local magnetization leads to
(oi)=(1+2+3)/3=2 for all pixelsi. As a result, the Ham-
ming distance in the high-temperature limit becomes

3
;1 (2—&)%exp(2moBst — BsE?)
Dy(Tg—)= 3

2;1 exp(2moBst — Bs£?)

~0.1726.

This asymptotic behavior is checked in Figh% We now
switch on the product interaction, that |8;#0 settingTy

nfindH at their optimal values. As clearly shown in Fig. 5, the

performance of the restoration is dramatically improved. In
this figure, the poinf8;=0 corresponds to the minimum of
the Hamming distance in Fig. 2.

D. Dynamics

An important and interesting problem is to determine the

It is straightforward to check that the above equations coinpasin of attraction of the Hamming distanDg(t). In fact,

cide with those in[4] for the Q=2 case. To keep things because of the presence of locally stable states, the final state
simple, we first assume that there is no glassy term in ousf the restoration process is strongly dependent upon the
decoding process, i.e3;=0. In Fig. 2, we plot the Ham- initial condition of the dynamics. In addition, as the number
ming distance as a function of the decoding temperature foof locally stable states increases with the number of the finite
Q=3 andT,=0.75. The minimum is reached &=0.75. gray-scale levels, it becomes crucial to choose the initial
The same foQ=4 in Fig. 3. It can be shown numerically, at state appropriately. However, as it is well known, it is diffi-
least forQ=3 andQ=4, that, given the original image at cult to treat the dynamics of spin system explicitly in finite
temperatureTg, just below the transition temperature, the dimension, especially, dynamics in two dimension that is the

036121-5
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(a) (b)
Dn m

08 T T T 3 A T T T

28} 5 1
07 [ . \

26 H 4
06 - 1 24} ! .
05} - 225 ]

2r 3

04 1 8f i 1
03} - 16 ]

141 1
02} ! . . .

—_— / FIG. 2. The Hamming distances without
glassy term 3;=0) for the case oQ=3. (d) is

obtained by expandin¢g) around its minimum.
The magnetizatioom and corresponding free en-
ergy — frgare plotted in(b) and(c), respectively.
Here, the dotted lines and the solid lines are lo-
cally stable states and globally stable states, re-
spectively.

X : X 1 15 2

Tq Tq
case of image restoration. In the previous section, we introwith the following transition rate:
duced the infinite range model and solved it analytically.
Using this model, we derived the properties of image resto-
ration and as we see in the next section, the results do not
contradict qualitatively with the properties in two dimension.
With this fact in mind, we also use the infinite range model =
to investigate the dynamical properties of image restoration.
In the equilibrium limitt— oo, without glassy term, namely,
B3;=0, the properties of image restoration in the infinite
range model are completely written by magnetization )
Therefore, we assume that the dynamics of image restoratictnd W(F{o})=w(o— o), where we defined{o}
is also expressed by the time evolution of the magnetizatior= (o1, - - - .0k, - - . ,on) and single pixel changing operator
m(t). Therefore, we derive the differential equations with Fy that works as{o}={o}'=(0o1, ... 04, ... ,0N).
respect to the macroscopic variables, namefyft) and By introducing the probability distribution of the magne-
Dy(t), from the microscopic master equation. For the sakdizationm, viz.,
of simplicity, we restrict ourselves to the case without the
glassy term. The master equation of our system leads to

P(m)=> p({oh)lm—m({o})]
dp({c}) N © 7
—ar — & 2, [wEdahp(Fdah

k=1 oy =

w({o})=w(oy— o)

exf{ — (h+ Bg)at, +2(mBy+h7) o]
Q
> exd— (h+ Bg)ot, +2(mBy+h7) o]

Uk/=l

and after some algebra we obtain the following differential
—w({ohHp({o}] equation analytically:

036121-6
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4

X

FIG. 3. The Hamming distances without

glassy term 3;=0) for the case of=4. (d) is
obtained by expandingg) around its minimum.
The magnetizatioom and corresponding free en-
ergy — frg are plotted in(b) and(c), respectively.

36

34
32

28
28 [ =mmmammee
24 +
22

1sF

16

i
i
kY

T
,
-t

"
i T TSP

14—
0 02 04 06 08
Ta
dm Q " 2(c), we see that forT4<<0.35, there exist locally stable
W=—m+2 Q(f)j Dx B(x,§)|BJ=O. states. Therefore if we fail to choose the initial condition
=1 o appropriately, the Hamming distance converges to the non-

o ) ) o optimal values. For practical situations, the corrupted image
The derl\(/jatlon o;the aboveldlﬁerer;tlﬁl equation 'Sdreportedcorresponds to our initial state. For the cakerTs, we
in Appendix A. The time evolution of the Hamming distance i i (1) iqi
Dy(t) is obtained by substituting the time dependence of thén?:;éa;;htieH:;?Srzg]%ndéstzﬂg'* ret;ztg/veen the original
magnetizatiorm(t) into Dy(m). In Fig. 6, we plot the time '
evolutions of theQ=3 Hamming distance foll4=T; (a)
andT4# T (b). From these figures, we see that if we choose
the hyperparametefy so as to satisfy the relationshify
=T, the Hamming distance converges to its optimal value
for any initial condition. On the other hand, fdry#Ts,
there exists a threshold of the initial value of the Hamming
distanceD{®) beyond which the flowDy(t) does not con-
verge to its optimal value. As the dynamical equatiaith
respect tom) is exactly the same as the time dependent
Ginsburg-Landau (TDGL) equation, that is, dm/dt= In particular, fora,= 7= 1.0, this leads t(D,(})=0.5. From
—dfrs/dm, where RS is replica symmetric, the nature of theFig. 5b), we see that if we choose the corrupted image as an
dynamics is intuitively understood as a steepest descent toiaitial state, we destroy the observed corrupted image and the

local minimum of the free energy. In fact, from Figga2-  result is even worse.

> (11— &)?

1)—
DP=

a2+ (13— 1) é%]exp(2moBsé — Bsé?)

2Z(Bs)

1
2N
Q
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JUN-ICHI INOUE AND DOMENICO M. CARLUCCI PHYSICAL REVIEW E64 036121

(a)

0.18
0.167 DH T T T
0.16
0.166
0.165 0.14
0.164 0.12
0.163
0.1
0.162
0.161 0.08
%1% o.'35 014 0.:15 0.5 0.06
(b) H
0'04 1 1 1 1 1
Du 0O 02 04 06 08 1 12
0.174 T T T ﬁ
J
0.172 |- -1
FIG. 5. The Hamming distand2y as a function of the strength
017 1 Ho s e - ] of the glassy ternB, for several values od,. We seta;=1.0. The
o0.168 - Hhle3d o e point 8,=0 corresponds to the minimum of the Hamming distance
in Fig. 2.
0V166 —.""“..""‘"."""""“"\"5-'“ I"l’ :‘,u |
0.164 - . Ve | (-++)
., < .,-" -
0.162 P Q
0.186 L o i ( : -)exq2(m* ﬁd+arhx+ Tohf)("_(h"'ﬁd) 0'2]
] 05 1 15 2 o=1
Ta =7 Q ,
N . + + —(h+ 2
FIG. 4. The Hamming distand,; of the MAP estimate for the 021 exp2(m, B+ ashxt rohg)o—(h+fa)o”]

case 0ofQ=3,T;=0.757,=a,=1.0 (a). Dy is plotted as a function
of the scaled fieldH=h/B,. We see that the minimum dy  andD,, reads

appeared atd =Hg,= o/2a2B,=0.375. The Hamming distance of

the MPM estimate is plotted ib) as a function of the temperature ~ ® _
T, for several values ofl. The figure shows that the minimum of Dp=4B4m(t=0)— m*]f DX[§—Q(0)]
the MPM estimate withH=H, is lower than that of the MAP o
estimate withH=H ;.

sl= 2k—1 — 2k+1
e

The asymptotic expressions of the magnetization and the
Hamming distance in the limit af—< lead to X[o?—(a)?].

_ _ it We plot the inverse relaxation timetd/as a function ofT4
m=m, +[m(t=0)—m,Je ", for the case oR=3,T,=0.75a,= 7o=1.0 in Fig. 7. In this
figure, we also plot the inverse relaxation time for several
~ values of the scaled fieltll. We see that the inverse relax-
Dy=Dy(m,)+Dye "o, ation time 11, takes its minimum at a finite temperaturg.
However, the inverse relaxation timeghever reaches zero,
and the relaxation to the equilibrium state is exponential for

where m, is a solution of the saddle point equations g T, regions.

(9)—(12) with B;=0 in the previous subsection. The relax-

ation timeto Is given as lll. MONTE CARLO SIMULATIONS

1 Thus far, we have worked under the assumption that all

* — the pixels lay on an infinite-dimensional grid, an approxima-

—=1+2 DX *~(0)? . , ;

to Bde Ao~ (0)] tion that enabled us to derive exact analytical formulas. In
order to test the efficiency of th@-Ising model on the more
realistic case of a two-dimensional picture, in this section,

with we carry out Monte Carlo simulations at finite temperature
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(a)

0.65 T T T T

06 [y i
0.55 | 4 -
05 [ 4 i
045 | 1 3 .
04l %\ .

0.35 | 5 g

0.25

J FIG. 7. The inverse relaxation timetd/as a function ofT 4 for
the case ofQ=3,T;=0.75a,=7,=1.0.
. (a)
1 é :1 tls ;3 10 (ﬁs I
t H

FIG. 6. The time evolutions of the Hamming distance are plot-
ted in(a) T4=T¢=0.75 andb) T4=0.2#T,=0.75. We see that for 0178 T
the case offy=T, the Hamming distance converges to its optimal
value for any initial state of the dynamics. On the other hand, if we
set T4=0.2#Tg, the Hamming distance converges to the wrong
state that is higher than the Hamming distance between the original
image and the corrupted one, thatix;)=0.5.

017 |

on a real-world image witlQ =8 gray-scale levdlFig. (a)] . ‘
corrupted by a Gaussian noise with=1.2[Fig. 9b)]. Here 0 05 1 d
the interaction in effective Hamiltonian is now restricted to (b)

the nearest neighbors spins on two-dimensional square lat-

tice. As before, we first study the Hamming distance without D
the glassy term. The resulting curves averaged over 20 016 |
Monte Carlo runs are shown in Fig(a8 for three different g
values of the raticH=h/By. The plots reflect indeed the §
mean-field behavior of Figs.(@ and 3b). The correspond- ”
ing restored picture at optimal values is shown in Fig) 9t ;

is evident that the ferromagnetic term succeeds in eliminat- 011 | §§ %
ing the noised pixel, i.e., isolated ones, but at the same time §§ y % § §§
it also smoothens out the small true details of the original §§§§§§§§§§§ X
picture. For this reason, by keeping fix8§* andH,;, we RRARX
switch on the glassy term, namefy;#0. In Eq.(4) for the
analysis of the infinite range model, we sent products 0.06 05 1 §
&é, (i,j=1,... Nji#]) of two pixels in original image J
through the channel. In this case, we send extra information

about the correlation of arbitrary two pixels to receiver. FIG. 8. The Hamming distance calculated by Monte Carlo simu-
However, we may send another kind of extra information.lation for 100 100 standard picture “house.” The curves averaged
For example, it may be useful to send the square distanceser 20 MCS runs are shown [i8;=0 (a) and8;#0 (b)].
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Ising model using pair approximatipr{9] (the Potts model
using cluster zero temperature progeassthe context of the
MAP estimation. Therefore, these methods are referred to as
mean-field annealingln this paper, however, we use the
mean-field iterative algorithm to obtain the MPM estimate.
For this purpose, we set temperatdre 1 during the itera-
tions [see EQ.(B6) in Appendix B|. Recently, mean-field
iterative algorithm in the context of the MPM estimation was
applied to error-correcting codes problefd®] and its per-
formance was investigated form information geometrical
point of view[11].

Using the mean-field approximation with periodic bound-
ary conditions for two dimensional square lattice of dize
X L,, the recursion relations with respect to the local mag-
netization at a sitei(j), namely,m;; lead to

t
Tr, ol ()

! Tr, e’ @)

(13

oP(e)={3mY, +m{_ +m® +m®, 1+ 2h7 )

—(23+h)o?, (14)

Mij+L, =M, Mg j=mj, (15

FIG. 9. The original picturda) (*house,” size 100<100), the  \yhere Ty,(- - -) means the sum with respect to the gray-scale
corrupted picture bya.=1.2 Gaussian noisg), the restored pic- oyl namelyor=1,2, ... Q. The details of the derivation
tures atB,=0 (c) and 6,70 (d} are displayed. by using a variational principle are reported in Appendix B.

Then, we obtain the estimate of the pixg|, namely,
Q(m;;) by solving the above nonlinear maps until appropri-
ate error tolerance is satisfied. In order to investigate its per-
F{ {3 —Jo(fi—fj)z}zl formance, we introduce the following three measures:

between two pixels, namely,&(—£)% (i,j=1,... N;i
#]) through the following noisy channel:

PJl(&—¢)%)=

1
ex
V2ma, 1 Lobe
D= > 2 [om)-&12
2'—1'—2 i=1j=1

For this degrading process, we use the likelihood

2a3

1 b L
M= R
DH 2L1L2 ZL J'Zl [Q(mll) TI]] 1

! i 22
P({JH{U}):WGX[{— ?J ; {Jij— (oi— 0%}

to construct the posterior distribution. Here we agtJ, 2 1 )
=1.0 and carry out Monte Carlo simulations to check the Dy’= 2LL i21 21 [7ij—&jl%

efficiency of the above extra information. The curves in Fig. tr2i=ti=

8(b), for 20 Monte Carlo runs, show an improvement of thewhereDH, D andD,(42> are distances between the origi-

. . .. '[)
recovered image. The restored image at. the _mmmﬁj,i’ﬁ nal image&; and the restored on@(m), the corrupted
is on the lower right corner of Fig. 9. It is e_V|dent that. tr_]e image;; and the restored one, and the corrupted image and
extra term preserves many of the small details of the orlglna{he original one, respectively. We choo=8, L,;=L
image, for example, the white edge of the roof, which was_ 54 andh=1.b and solve the recursion rel’atié(ﬂ.ﬁ)z

blurred for the case of;=0. (14), and(15) until the error
IV. ITERATIVE ALGORITHM  (MEAN FIELD ) 1 Ly Lo
= 2 E |m.(F+1)_m.(.t>|
1 H 2L L “= “— 1] 1]
The restoration by means of Monte Carlo methods is the iboi=i =1

result of a statistical process that might take long time even

for powerful computers as the size of the picture increasedecomes smaller than 18. We list the results in Fig. 8
Therefore we apply mean-field iterative algorithm to our(“girl” ) and Fig. 9(“chair” ). The original images are de-
model. Mean-field iterative algorithm was already applied tograded by the Gaussian noise with a standard deviatjon
image restoration problem by several authors in the context 2.2. This standard deviation gives the Hamming distance
of the MAP estimation3] (the Gaussian model[8] (the  between the original image and the degraded @&
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b)

FIG. 10. The results of the it-
erative algorithm are displayed.
The original “girl” picture of
128x 128 (a), the degraded pic-
ture (b), the restored pictures with
J=0.2 (c), J=1.8 (d), and J
=2.5(e) are shown.

~0.205. Obviously, the picture “chair” contains many more [EQ. (2)] is quadratic and it is hard to detect the edges in the
edges than the picture “girl.” Therefore, one of our aims of “chair” picture. For both pictures, the optimal performance
this demonstration is to check to what extent our model deis achieved around the paramet€;=1/J=1/1.8~0.56.

tects the edge parts in the real-world picture. In Fig. 10, weThis value is not so different from the parameter that was
plot the Hamming distanceBy [(a)] and D(Hl) [(b)]. We  obtained in Monte Carlo simulationgsee Fig. €)]. Of
choose the degraded image as an initial set of the pixels armburse, from a practical point of view, it is possible to stop
investigated thel dependence of the Hamming distance. Wethe Monte Carlo simulation and not to wait for the conver-
see that the performance of the algorithm for the “girl” pic- gence to attain the equilibrium state precisely. Then, we may
ture is much better than that of the “chair” picture. This is regard the snapshot as the restored image if the performance
because the smoothness term in the effective Hamiltoniais not so bad. However, in the mean-field approximation we

(a)

FIG. 11. The results of the it-
erative algorithm are displayed.
The original “chair” picture of
128x128 (a), the degraded pic-
ture (b), the restored pictures with
J=0.2 (c), J=1.8 (d), and J
=2.5(e) are shown.
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FIG. 12. The results of the it-
erative algorithm are displayed.
The original “house” picture of
128x 128 (a), the degraded pic-
ture (b), the restored pictures with
J=0.2 (c), J=1.8 (d), and J
=2.5(e) are shown.

constructed here, the convergence of the iteration is guaran- (a)
teed(Figs. 11-13. D
048 H T T T T
o chair B
V. SUMMARY AND DISCUSSION 04| hosse ©
In this paper we investigated the efficiency of @dsing 035 |-¢ g

model for image restoration problem, when the original im-

age is affected by Gaussian noise. By introducing the infinite i A
range model, we gave an analytical expression for the Ham- 025 | %o .
ming distance, which is shown to reach its minimum at some s 6

finite temperature. We found that the optimal temperature for “T 2%, o¢
the GSIR using th€-Ising model coincides with the source 015 - ’:'-SSSSSSSESSSSSSS-
temperature in contrast to the chiral Potts cgige We also *tteneee .
found that as in the Ising and Potts spin cases, the presence 013 v p teasaneets
of a parity-checKike term greatly increases the performance

of the GSIR process. Although for practical restorations of (b)

images, one would not like to smoothen out two points far D

away, the mean-field results provide a remarkable eye-guide 05 Dy : : : :

for a short-range version of the effective Hamiltonian as con- 045 b choir m °o°°°
firmed by Monte Carlo simulation on two-dimensional pic- oal nin g oo°

tures. From a dynamical point of view, we also obtained the | o° wn2y
time evolution of the Hamming distance analytically and 08 0°° .525”
found the critical initial Hamming distance beyond which the osr o°° z,%’

flow does not converge to its optimal value. We show the 025 - o° .ﬂ’

dynamical equation we obtained is exactly the same as the 02 O,v'

TDGL equation. Therefore, the destination of the dynamics 015 - o‘:'

is one of the locally stable states of the free energy, and if we 01| OB

fail to select the initial condition, the dynamics converges to 0.05 | ‘."

the local minimum that does not give the minimum of the ol R - L L s
Hamming distance. ° o5 ! J e 2 28

Recently, Skantzos and Coolgt?], reported the synchro-
nous dynamics of one-dimensional and infinite-dimensional FiG. 13. The Hamming distance between the original image and
random field Ising models. They found that the dynamics hashe restored onB, as a function ofl [(a)] obtained by the iterative
much more rich behavior than the sequen@laubej dy-  algorithm. The Hamming distance between the restored image and
namics. Therefore, for our present model system, there is the degraded onB(}’ is shown in(b).
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possibility that if we consider the synchronous dynamics in- AE=(h+Bg) (02, —02)—2B4m(o — o)
stead of the sequential one, the behavior of the dynamics k
may be different from the results we obtained here. —2h(oy — o) 7,

Using the mean-field approximation, we also constructed
the iterative algorithm that converges faster than the Monte ) ) ) ]
Carlo simulation. We derived it from a variational principle Where we defined single pixel changing operafgr as
of the free energy and demonstrate it for two types of thd kP o)) =P (o1, ... 0%, ... ,on) for arbitrary function
real-world pictures. From those results, we concluded tha® ({c}) and used the expression of the magnetization
we need some extra term that would detect the edges if the
picture has a lot of edges. We suppose that the glassy term 1
we introduced in the infinite range model may play this role. M=y ; gj-
This will be achieved by means of the TAP-like mean-field
approximation{ 10} Then, the transition rate/(o,— o) iS given by
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) exf] — (h+ Bg)ot, +2(MBy+h7) oy ]

(TkV:

APPENDIX A: DERIVATION OF THE FLOW

OF MAGNETIZATION and w(F{o})=w(ow— o). For this transition rate, the

master equation leads to
In this appendix, we derive the differential equation with

respect to macroscopic order parametefrom microscopic N0

master equation for the infinite range version of @dsing E -3 3

model. For simplicity, we consider the case of no-parity dtp‘({o})_k Y

check termB;=0. For the Q-Ising model, the effective

Hamiltonian is given as —w({oh)p:({a})].

) [W(F{o})pu(Fila})

(Tk/:

Here we introduce the macroscopic probability

Heﬁ=f—,‘\’,; (m-o;>2+h2 (gi—7)2=H({0o}).

Therefore, the energy difference due to the local spin change P(m)=> p({o})S[m—m{o})],
o— oy, namely, AE=H(F{o})—H({o}) is calculated lo}

in terms of the above Hamiltoniarig({o}) and H(F{o})
as follows: and consider the derivative &(m) with respect td, that is,

d d
Cpim=3 LD 5 m(ap)

o

N Q
=> [E > [w(ﬂ{a})pt(a{a})—w({o})p«{o})]}6[m—m<{o}>]

{o} | k=1 op=1

Mo

> >

{o} k=1 o

:&i[g

m| i

w({o})p«{on[a[m—m<{a}>+$<ak—ok,> —5[m—m({0})]]

r=1

i

=

M =

Q
2

1 oy

1
w({o})m({o})a[m—m({o})]ﬁwk—om]

1
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P NOoQ exf — (h+ By) o2, +2(mBy+ rh)ow] |1
—oml 2 PehZ 3 | o e | (o g dlm=m({r))
| 2 exd—(h+ By ot +2(mByt rh) o]
Ok'=1
Q ext] — (h+ By) a2, +2(mBy+ 7h) oy ]
:a_m; p({ })2 02:1% 9 ek S
‘ > exil— (h+By)os, +2(mBy+ rh) o ]
Ok’ =1
Qo] exd—(h+ By ol +2(mBy+ Th) o ]
-3 = S SRR sm-m({o})]
‘ > exﬁ—(h+ﬁd)ai,+2(mﬁd+Tkh)ka]
Ok'=1
Q
L ow N 021akfexr{(—h+ﬁd)o§,+2<mﬁd+rkmokf]
=%{E} pdohi Nl 2, o 2~ sm-m({oh], (A1)
E qu_(h+Bd)U§r+2(mﬁd+Tkh)o'k’]
Ok'=1

where we expanded the right-hand side of the above equ@ibnwith respect to the quantity of orderN/ Here we should
notice that

”MO

L (TkeXF[ (h+,3d)<7k +2(mBy+ 7h) o]
g WL
N

k=1

2 exf — (h+ Bg)ot, +2(MBy+ ) oy ]

TK'=1
Q Q
2, eXp2moBt—fet?) 21aexq—(h+ﬁd>oz+2<mﬁd+ha7x+hmf)o]
_ & f Dx| — (A2)
2(B9) .
Z —(h+ Bg)0?+2(mBy+hax+hré) o]

should hold due to the self-averaging properties in the thermo-dynamicalNimite. Substituting this expression into Eg.
(A1), we obtain

d
i mE p({a}) sl m— m({a})]——E p{o})d[m

Q Q
2, OH2mBeE— Bt 21oexq (h+Bg)o?+2(MBy+hax+hroé)o]
—m({(f})] f Dx q
2(B9) -
2_) —(h+ Bg)a?+2(mBy+hax+hré) o]
Q Q
5 4 521 exp2moBet—fE”) | 2 oexd—(h+Bg)a’+2(mBa+hax+hmed)o]
21exp[—(h+,8d)02+2(m,8d+ha7x+h70§)o]
Q Q
) 2, OBt —pt?) | 2 oexi —(h+fg)o+2(mBythaxthret)o]
~am| M m= Z(Bs) LDX e

Zl exd — (h+ Bg)o?+2(mBy+hax+hroé) o]

(A3)
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Multiplying m and substituting®,(m) = 6l m—m(t) ] to the left-hand side of the above H&3) and calculating integral with
respect tam, we obtain

[ mand e~ mamtm-mp—T y
_m maﬂm—m(t)]—a .m mﬁ[m—m(t)]—a. (A4)

Using the same way as the left-hand side of the (B3), the right-hand side of EqA3) leads to

Q
- 2, x2moBst—Bet?)
J_mmdma—m Sm—m(t)]| m— 28y J_me
Q
> oex —(h+ Ba)o?+2(mBy+hax+hré)o]
X G_(;
}_}l ex] — (h+ Bq) 02+ 2(mBy+hax+hro) o]
Q
2, OXH2MoBst— et?)

:_ficdmé[m—m(t)] m-— Z(Bs)

Q
>, oex —(h+ Bg)o?+2(mBy+hax+hré)o]

xf Dx

Q Q
2, exp(2moBsé—pet) 3 ool (h+Bo)o?+ 2(mBy+hax+Nret)o]

=1 0
o 289 LDX

o=1
Q
21 exd — (h+ Bg)o?+2(MBy+hax+hroé) o]

Q (A5)
> exf — (h+ Bg) o2+ 2(mBy+hax+hryé)o]

o=1

From Egs.(A4) and (A5), we obtain the final form of the dynamical equation with respect to magnetizatias

Q Q
dm 2, expemoBeE—pst?) | 2 oexd—(h+Bg)o’+2(mBy+hax+hroé)o]
oM e fﬁ x| o . (A6)

dt Z(Bs) .
exd —(h+ Bg)o°+2(mBy+hax+hryé) o]

We easily see that the above equation is exactly the same as APPENDIX B: VARIATIONAL PRINCIPLE
the TDGL equation that is derived from the steepest descent FOR THE Q-ISING MODEL
of the replica symmetric free energy, that is,dfrs/om In Sec. VI, we introduced the recursion relations that de-

=dnV/dt. We should also notice that in the limit bf>c and  termine the estimate of the original image in terms of mean-
dnm/dt=0, Eq.(A6) corresponds to the saddle point equationfield approximation[8,9]. In this appendix, we show that
with respect tam, which was calculated by equilibrium sta- these recursion relations, Eq4.3), (14), and (15), can be
tistical mechanics in Sec. Il A. derived from a variational principle.
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We consider the following optimization problem:

D IREED T S Hpij(gij)

min {&(p)—TS(p)}, 712 713 Tij Okl oN-IN ]
X 2, Inpii(ap).
£(p)= 3, Moo, 2 i)
The derivative of the third term of EqB2) with respect to
S(p)E—E p{aHinp({a)), pij(ci;) leads toESij:l)\ij, therefore, we haved(F/ dpj;)
te} =0 as
where HamiltonianH is defined on the two-dimensional
square lattice of sizeé XL, (L;=L,=N) as ; ( el E .Yy H({o))
J Pijl Tij gij=1 { o1z aijj Tkl ON-1N
H({oh) =5 % {(gij— 01207+ (03— 07 1)+ (o) X 1012 pra(Tu) - - P (TN 1)

+T|npij(0ij)+T
_‘Ti+1,j)2+((7ij_Ui—l,j)2}+h2 (1ij—0ij)?, 0
ij
+T > 2 pii(a)In p( o) + Njj
and £ and S correspond to the energy and entropy of the KIZij o=

system, respectively. Then, we use the mean-field approxi- -0
mation, that is, '

This leads to
p({a}){j[ pij(0ij).
pl](o'u) Aexr{——E 2 2 2 H({U})

We should notice that for each pixei,|), the following o12 ij oKl ON-1N

normalization condition should hold:
Xp1A 012 pri( o) - 'pN—lN(UN—lN)}- (B3)
E plj(o-lj) 1. (B1)

()'ll

Using the normalization conditiofB1), we obtain the factor

Using the Lagrange multipliex;; , we take into account the \ 0
above normalization condition with respect to the marginal _ SN,
distribution, and maximize the following functional: A—exp( T 1 > Z (o) Pk|(0k|))

kl#ij o=
as
F=E({o})—TS {U})+E )\u( 2 plj(a-lj) 1)
. (82) 2
A=| X ex ——2 22 e 2 H({op
The energy¢€ and the entropys of the system can be written oij=1 T o 7ij Tkl IN-IN
explicitly as -1
Xp1A 012 pri( o) - pn—1n(ON-1n) ) . (B4
=3 3 S o S H{pdon)
1 g “ N From Egs.(B3) and (B4), the marginal distributiom;; ;)
Xpij(aij) - pa(o) - pn—in(ON—1N) s reads
ex;{ - T E 2 Z E H({ o) pado12) - - - pra( o) - - 'PN1N(0'N1N)}
0'12 Tjj Ikl ON-1N
Pij(Uij): Q .
> exr{— =2 X 2 Hohpid o) palow) - 'leN(G'NlN)}
gjj=1 12 ij oK ON-1N
In order to calculate the sul, - -EUNNfl(. -+), we rewrite the Hamiltonia{({c}) as
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H({U}):_‘](O'i,j+1+0'i,jfl+0'i+1,j+U'ifl,j)o'ij_ZhTijO'ij+(2‘J+h)(0'ij)2_‘]k|2¢ij (Oyi+1T oK I—1T O 1) T Ok—1)) T
+(2J+h) E ((Tk|)2+hz (Tij)2_2h E TKIOK] »
kl#ij i kl#ij

and using the relations between the local magnetization and the marginal distribution, namgly;
:Egi’jﬂzlai’jﬂp(ai,j+1), etc., we obtain

- = E D 2 HAoDpid 01 pra( o) - - - pn-an(On- 1)

”'12 Tij Tkl IN-1N
2h (23+h)
f(mi,j+1+mi,j—1+mi+1,j+mi—1,j)0ij+?Ti10ij —(Uu)
E H{obp1do12) - pr(ow) - - - pn—1n(ON-1N), (BS)

{o’}el'

wherel’ stands for a set of the sites except foyj|.
Using Eq.(B5), we rewritep;;(oj;) as

1 (23+h)
expy LIy g+ My g+ My g+ My )+ 2h 7oy — ——F—(oyj)
pij(oij) =—gq

1 (2J+h) o
Eﬁ,lex f[\](mi’j+1+mi’j_l+mi+1’j+mi_1’j)+2h7ij]0'ij_T(O’ij

where the factors

1
ex;{ - f{ }EII H{ oD p1do12) - - pr o) - - 'pN—lN(UN—lN)}

appearing in both numerator and denominator ofdféo;;) were canceled. As the results, we obtaip as follows.

1 (23+h)
Q 221 ojj ex _[‘](mi,j+1+mi,jfl+mi+1,j+mifl,j)+2h7'ij]0'ij_#(‘Tij)
2 i Pij O'u) . (2J+h) (B6)
" 21 exp[ [I(m; J+1+mlj l+ml+lj+ml 1J)+2h7'|1]0'|1 (0'”) ]
oij=

If we setT=1, we can obtain the recursion relations with 0 (o) ={3[m", ;+m{®_+m®  +m" ]+ 2h7}o
respect to the local magnetization; under the periodic

boundary condition as —(23+h)o?,
2 ®
> oevi @ M jen=My,  Mipn =M,
o=1
m(t+1)_ 5 ,
D e (@) which were obtained in the previous section as Hds),
o=1 (14), and(15).
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