109 research outputs found

    Tempestites in a Teapot? Condensation-Generated Shell Beds in the Upper Ordovician, Cincinnati Arch, USA.

    Get PDF
    Skeletal concentrations in mudstones may represent local facies produced by storm winnowing in shallow water, or time-specific deposits related to intervals of diminished sediment supply. Upper Ordovician (Katian) of the Cincinnati region is a mixed siliciclastic-carbonate succession including meter-scale cycles containing a shelly limestone-dominated phase and a mudstone-dominated phase. The “tempestite proximality model” asserts that shell-rich intervals originated by winnowing of mud from undifferentiated fair-weather deposits. Thus shell beds are construed as tempestites, while interbedded mudstones represent either fair-weather or bypassed mud. Meter-scale cycles are attributed to sea-level fluctuation or varying storm intensity. Alternatively, the “episodic starvation model” argues, on the basis of petrographic, taphonomic, and stratigraphic evidence, that, despite widespread evidence for storms or other turbulence events (e.g. tsunamis), winnowing alone could not generate shell beds where none had previously existed. Instead, variations in sediment supply are construed as the principal cause of shelly-mudstone cycles. Shell-rich deposits accrue during periods of siliciclastic sediment starvation and relatively shell-free mud accumulates during periods of sediment influx. Tempestite proximality and episodic starvation models lead to contrasting predictions about proximal-to-distal facies patterns. These are: (i) large versus small volumes of distally-deposited, bypassed mud; (ii) proximal grainstones and distal packstones versus distal grainstones and proximal packstones; and (iii) proximal versus distal amalgamation and condensation of shell beds. In this paper, these predictions are tested by (i) comparing meter-scale cycles from different horizons and depositional environments through the lower Cincinnatian succession (Kope through McMillan Formations representing deep subtidal through intertidal environments), and (ii) correlating intervals and individual meter-scale cycles from the Fairview Formation of the Cincinnati Arch (shallow subtidal) north and west into the Maquoketa Shale (deep subtidal) in subsurface of Ohio and Indiana. Both approaches show patterns consistent with episodic starvation, not winnowing, including: (i) small differences in stratigraphic thickness indicate small volumes of bypassed mud; (ii) discrete distal deep-water grainstones that splay proximally into bundles of thinner shallow-water packstones alternating with shelly muds show that grainstones formed from a lack of, rather than removal of mud; and (iii) distal shell bed amalgamation and condensation (and corresponding proximal splaying) of shell beds shows a proximal source of mud. Thus, winnowing by storms or other turbulence events did not generate shell beds or cycles from undifferentiated sediments despite abundant evidence for storm deposition. High-resolution correlations imply that the shell-bed and mud-bed hemicycles reflect simultaneous basin-wide changes in sedimentary style rather than contemporaneous facies belts that track sea-level. In this sense, shell-rich and mud-rich hemicycles are “non-Waltherian” facies

    A moment from before 365 Ma frozen in time and space

    Get PDF
    This study presents a detailed analysis of an exceptionally well-preserved articulated specimen of the trilobite Trimerocephalus from the Late Devonian of the Holy Cross Mountains in Poland. X-ray microtomography reveals the oldest direct evidence for a moulting episode known from the fossil record. The process of moulting as well as associated features observed in the investigated specimen are interpreted by comparison with extinct and extant Xiphosurida arthropods, which survived global P/T extinction and are among the closest extant relatives of trilobites. A very special moment frozen in time and space millions years ago provides rare insights into the behavior and physiology of these long-extinct arthropods

    Characterizing the Oldenburg ‘Butter Shale’ from the Upper Ordovician (Katian) Waynesville Formation along the Cincinnati Arch, USA

    Get PDF
    The Upper Ordovician (Katian) strata of the Cincinnati Arch contain numerous mudstone units known locally as ‘butter shales’ or ‘trilobite shales’. Most of these deposits are heavily collected for their excellently-preserved trilobites. The Oldenburg Butter Shale, however, is a previously-undescribed mudstone package from the Waynesville Formation, known only from limited exposure near Oldenburg, Indiana. The Oldenburg Shale is a 2 m-thick mudstone package with minor beds of shelly packstones, and calcisiltite-filled gutter casts. It contains abundant articulated trilobites. The mudstone portion contains illite, chlorite, quartz, calcite and traces of dolomite and pyrite. In outcrop, the shale exhibits no obvious bedding and breaks conchoidally. When cut and polished, the mudstone shows a mottled fabric, containing Lingulichnus and Chondrites trace fossils. The shelly units contain brachiopods, gastropods, and bryozoans. The gutter casts are 20 – 30 cm wide, display hummocky stratification, and contain Lingulichnus. Faunally, the Oldenburg is very unlike surrounding Waynesville strata. Instead of being dominated by brachiopods as is typical, the Oldenburg fauna consists of abundant bivalves (Modiolopsis, Ambonychia, and Caritodens), lingulid brachiopods, and the trilobites (Isotelus, and Flexicalymene, and rare Amphilichas in the upper 30 cm). Articulate brachiopods are represented in the shale to a limited extent by the genera Zygospira and Platystrophia. The shale also contains bryozoans, orthoconic cephalopods, rare crinoids and conulariids. Conodonts and scolecodonts are a major component of the microfauna. Taphonomy of the fossils, together with sedimentological features, indicates that this butter shale accumulated rapidly as a series of episodes of distal storm-generated mud and silt flows. Towards the top of the mudstone is a horizon of small concretions, about 7 cm wide. Overlying the butter shale is the pyrite crusted surface of the Mid-Richmondian Unconformity which removes the Oldenburg shale in most other locations. The concretions present at the top of the shale are the likely product of the prolonged sediment starvation accompanying this unconformity

    Trace Fossils from the Shawangunk Formation in the Hudson Valley Indicate an Estuarine Depositional Environment

    Get PDF
    The Middle Silurian Shawangunk Formation crops out in the lower Hudson Valley and extends toward the southwest into New Jersey and Pennsylvania. It reaches a maximum thickness around Guymard (1,400 ft.; 400m) and gradually thins toward the northeast, pinching out near Binnewater, New York. The formation consists of gray conglomerate, quartz arenite, and minor shale. Worm burrows, Arthrophycus, Skolithos, Planolites?, and a bilobed resting trace have been found at different stratigraphic horizons in the Shawangunk Formation. All traces are associated with a finer, sandy matrix and/or hematite-rich interval rather than a coarse, pebbly quartz sandstone lithology dominant in the bulk of the unit, indicating a marine influence as well an environment with less energy than the braided stream environment inferred for most of the formation. Rivers and streams moving away from the eastern Taconic Mountains flowed into a westerly situated shallow marine basin. Eurypterids have previously been found on approximately the same stratigraphic levels as the traces and may be useful for constraining the depositional environment of these beds. Silurian eurypterids, now largely considered euryhaline, suggest that the environment of deposition was a marine-influenced estuary based on recent work documenting autochthonous assemblages of similar taxa in marginal marine settings. Association of eurypterids with Arthrophycus-dominated ichnofacies has been noted elsewhere in the Lower Silurian Tuscarora Formation in central Pennsylvania, suggesting a recurrent nearshore benthic assemblage

    Upper Ordovician Strata of Southern Ohio-Indiana: Shales, Shell Beds, Storms, Sediment Starvation, and Cycles

    Get PDF
    The Cincinnatian Series (ca. 450 to 442 Ma) of the Cincinnati Arch features some of the most spectacular Ordovician fossils in the world. The rich faunas of bryozoans, brachiopods, molluscs, echinoderms, and trilobites are preserved as discrete shell-rich limestones, cyclically interbedded with sparsely fossiliferous shales and mudstones that may yield exceptionally preserved trilobites and crinoids. Similar successions of shell beds interbedded with mudstones are common components of Paleozoic successions. In such successions, the genesis of the highly concentrated shell beds is often attributed to storm-winnowing, but is this the whole story? This trip will offer an overview of the classic Cincinnatian Series, with ample opportunity for examining and collecting the rich fossil assemblages throughout much of the succession. Discussions will focus on the origin of interbedded mudstone-limestone cycles. We will emphasize depositional processes, particularly the role of intermittent siliciclastic sediment supply, carbonate (shell) production, and winnowing by storms and other high-energy events in a critical discussion of the storm-winnowing model

    Katian GSSP and Carbonates of the Simpson and Arbuckle Groups in Oklahoma

    Get PDF
    This guidebook was written for the 2015 International Symposium on the Ordovician System (ISOS) as a synopsis of the recent work (e.g., Goldman et al. 2007; Carlucci et al. 2014, forthcoming work for the ISOS meeting) on Ordovician-Silurian rocks of south-central and south-eastern Oklahoma. This new research and past studies (e.g., Harris 1957; Longman 1976; Longman 1982a, b; Fay et al. 1982a; Fay et al. 1982b) underscore the scientific importance of this region. The global stratotype section and point for the Katian Stage of the Upper Ordovician Series is examined on this trip. The first appearances of important graptolites, conodonts and chitinozoans in that section are crucial for worldwide chronostratigraphic correlation. Vertical and lateral facies changes of the Simpson Group demonstrate the variety and intricacy of sedimentary cycles and the importance of updating depositional models with sequence stratigraphic data. Carbonate facies of the Arbuckle Group are of general interest to all geologists, as they demonstrate a wide variety of sedimentary structures and fabrics that were deposited in tropical epeiric seas. Arbuckle Group carbonates show a variety of peloidal, oolitic, fossiliferous, stromatolitic, and brecciated facies that provide important insights into the depositional history of the “Great American Carbonate Bank” (Taylor et al. 2012). Simply put, these deposits are an exceptional natural laboratory for the sedimentary geologist. Siliciclastic deposits are also common in the Simpson and Arbuckle Groups, with shoreface sands and siltstones forming “bookends” to formation boundaries. The scientific importance of the Arbuckle region also extends into the realm of structural geology, where geologic cross sections (Fig. 1) of the Ardmore Basin, Arbuckle Anticline, and Washita Valley demonstrate overturned strata, extensive reverse faulting, and a series of major synclines and anticlines at a variety of scales. Pennsylvanian age tectonic features are just another example of why the Arbuckle Mountains is an excellent natural laboratory for field geologists

    The rise of pinnacle reefs : a step change in marine evolution triggered by perturbation of the global carbon cycle

    Get PDF
    The first appearance of pinnacle reef tracts, composed of hundreds to thousands of localized biogenic structures protruding tens to hundreds of meters above the surrounding mid-Silurian seafloor, represents a step change in the evolution of the marine biosphere. This change in seafloor morphology opened a host of new ecological niches that served as "evolutionary cradles" for organism diversification. However, the exact timing and driver's of this event remain poorly understood. These uncertainties remain, in large part, due to a paucity of index fossils in the reef facies, the difficulty of correlating between the offshore pinnacle reefs and more temporally well-constrained shallow marine fades, and cryptic unconformities that separate amalgamated reefs. Here we use delta C-13(carb) stratigraphy within a sequence stratigraphic framework to unravel these complex relationships and constrain the origination of Silurian pinnacle reef tracts in the North American midcontinent to near the Pt. celloni Superzone-Pt. am. amorphognathoides Zonal Group boundary of the mid-Telychian Stage. In addition, we identify a striking relationship between pulses of reef development and changes in global delta C-13(carb) values and sea level. Viewed through this new perspective, we correlate prolific periods of reef development with short-lived carbon isotope (delta C-13(carb)) excursions and eustatic sea level change that, ultimately, reflect perturbations to the global carbon cycle. From changes in the dominance of microbial reefs of the Cambrian to metazoan colonization of reefs in the Middle Ordovician, through the subsequent collapse of metazoan diversity with the Late Ordovician mass extinction, and the first appearance of early Silurian (Llandovery) pinnacle reef tracts and their proliferation during the late Silurian (Wenlock-Pridoli) and Devonian, major reef formation intervals increasingly coincide with delta C-13(carb) excursions. These patterns suggest that Paleozoic reef evolution was the product of environmental forcing by perturbations of the global carbon cycle

    Time-richness and phosphatic microsteinkern accumulation in the Cincinnatian (Katian) Ordovician, USA: An example of polycyclic phosphogenic condensation

    Get PDF
    Millimeter-scale phosphatic steinkern preservation is a feature of the taxonomically enigmatic Early Cambrian “small shelly faunas”, but this style of preservation is not unique to the Cambrian; it is ubiquitous, if infrequently reported, from the Phanerozoic record. The polycyclic phosphogenic condensation (PPC) model envisions both the genesis and concentration of phosphatic microsteinkerns as natural outcomes of shell bed genesis through episodic sediment starvation. This model predicts that more reworked and condensed shell bed limestones will contain more phosphatic microsteinkerns, but that even the least reworked limestones may contain some phosphatic particles. We test this model through examination of vertical thin sections densely collected through a 10-meter interval from the classic Cincinnatian (upper Katian, middle Maysvillian North American Stage) upper Fairview Formation, Miamitown Shale, and lower Grant Lake formations at four localities near Cincinnati, Ohio. For each of approximately 50 distinguishable limestone depositional units in each locality, a 2 × 2 cm square was selected for study. Each square was assigned a textural classification (mud content of intergranular space) and a breakage rank (pristine to comminuted). Phosphatic particle distribution was quantified both by visual estimation and by particle counting, with counts ranging from none detected to over 1000 per 4 cm2. Our analyses show a strong positive relationship between phosphate content and both textural maturity and fragmentation. This positive relationship is consistent with the PPC model and confirms that textural maturity can reflect the degree of condensation as well as depth-related environmental energy. This finding suggests that shell bed processes of repeated deposition and reworking make a significant contribution to the generation and accumulation of phosphatic particles. If local-scale sedimentary processes and conditions can control this accumulation, temporal changes in phosphatic sediment deposition rates may be linked to earth changes more complexly than through changing ocean chemistry on a global scale

    Upper Ordovician hardgrounds – from localized surfaces to global biogeochemical events

    Get PDF
    Upper Ordovician hardgrounds display a spectrum of complexity reflecting a range of local to global-scale processes. Hardgrounds are cemented seafloor surfaces typically marked by the presence of encrusting taxa and borings. Many hardgrounds show evidence for successive episodes of colonization by hard substrate specialists and are associated with localized evidence of seafloor erosion such as overhangs and reworked concretions. They commonly show trace amounts of pyrite and dolomite cements indicating an association with sulfate reduction. The most widespread hardgrounds are highly complex and unravelling their history provides insights into global biogeochemical events. The Curdsville and Kirkfield hardgrounds in the Appalachian Basin (Kentucky and Ontario) represent relatively simple end members of the hardground spectrum. They covered 10s to 100s km2 and formed relatively quickly during the early Katian. They display both planar to subplanar and hummocky to topographically complex surfaces (cm-scale) and contain highly diverse encrusting echinoderm faunas. Study of these surfaces yields important insights into the evolutionary history of encrusting communities. By contrast, the slightly younger hardground at the top of the Galena Group (Ka1) is a surface that is present throughout most of the Midcontinent Basin (>7.5 à 105km2). It is an example of a highly complex surface that was repeatedly modified by erosion and mineralization. Near the eastern margin of the basin in Indiana, the capping Galena hardground is pinnacled with cavity-filling sharpstone clasts, phosphate grains and bored crusts, iron ooids, and pyritic impregnated surfaces. It is onlapped by graptolitic shales of the Kope Formation (Fm) (Ka1) indicating an unconformity of approximately 1 m.y. To the west, in Illinois, the Kope Fm is erosionally truncated and the hardground is directly overlain by graptolitic shales of the Waynesville Fm (Ka3), where the unconformity expands to nearly 4 m.y. Toward Iowa, the hardground is onlapped by meters of phosphorite. Taken together, these observations reveal that the capping Galena Group hardground reflects a complicated history of repeated subaerial exposure, karsting, and marine flooding by a dysoxic to anoxic water mass with fluctuating redox conditions, similar to the age equivalent hardground at the base of the Fjäcka Shale in the Baltic Basin. Thus, hardground studies provide important insights for resolving the temporal continuity of the Upper Ordovician rock record and unravelling processes that controlled carbonate precipitation and dissolution and the evolution of sea floor communities. Some simple hardgrounds may have formed through random exhumation of cemented sediments on the sea floor through the effects of storm scour. However, their clustering into certain portions of the Upper Ordovician suggests that processes that affected sea water chemistry may also be involved. The most complex surfaces reflect major environmental perturbations with large amplitude sea level oscillations and redox changes that in some cases generated rare-earth enriched phosphorites
    corecore