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INTRODUCTION 

 The Arbuckle Mountains region of Oklahoma is characterized by a large inlier of faulted 

and folded rocks of Precambrian and Paleozoic age.  Precambrian and Cambrian basement rocks 

and early Paleozoic carbonates are overlain by westward dipping Pennsylvanian and Permian 

strata and by Cretaceous sediments of the Western Interior Seaway.  The Arbuckle Mountain 

region of Oklahoma contains one of the best and most continuous exposures of late Cambrian to 

Devonian aged strata in all of the midcontinent (nearly 3350 m or 11,000 feet; Ham 1969), most 

of which is highly fossiliferous.  This incredible sequence of rocks has generated substantial 

interest within the geologic community, with several books (e.g., Sprinkle 1982; Johnson 1991), 

field guides (e.g., Ham 1969; Fay et al. 1982a; Johnson et al. 1984; Fay 1989; Ragland and 

Donovan 1991; Cardott and Chaplin 1993; Suneson 1996), and journal papers (e.g., Goldman et 

al. 2007; Carlucci et al. 2014) devoted to the geology of the area. 

 The collision of Gondwana (Yucatan terrane) with Laurentia and the development of the 

Ouachita Mountains during the Pennsylvanian and Permian uplifted the carbonate strata that are 

the focus of this trip.  Exposure of these subsurface rocks has had not only scientific impact, but 

economic repercussions as well.  The Arbuckle (latest Cambrian; Stage 10 to Floian) and Viola 

groups (Katian) are mined for cement-producing materials, dolomite, and commercially viable 

crushed stone.  Quartz arenites in the Simpson Group are mined for silica and even the 

Precambrian basement rock (Tishamingo Granite) is quarried for building materials. The oil and 

natural gas resources stored in subsurface extensions of the Simpson Group in Arbuckle region 

strata have long engendered substantial interest. Highly porous sandstones of the Bromide, Tulip 

Creek, and McLish formations and fractured carbonates of the Viola and Arbuckle Groups are 

well known petroleum reservoirs. 

 This guidebook was written for the 2015 International Symposium on the Ordovician 

System (ISOS) as a synopsis of the recent work (e.g., Goldman et al. 2007; Carlucci et al. 2014, 

forthcoming work for the ISOS meeting) on Ordovician-Silurian rocks of south-central and 

south-eastern Oklahoma.  This new research and past studies (e.g., Harris 1957; Longman 1976; 

Longman 1982a, b; Fay et al. 1982a; Fay et al. 1982b) underscore the scientific importance of 

this region. The global stratotype section and point for the Katian Stage of the Upper Ordovician 

Series is examined on this trip.  The first appearances of important graptolites, conodonts and 

chitinozoans in that section are crucial for worldwide chronostratigraphic correlation.  Vertical 

and lateral facies changes of the Simpson Group demonstrate the variety and intricacy of 

sedimentary cycles and the importance of updating depositional models with sequence 

stratigraphic data.  Carbonate facies of the Arbuckle Group are of general interest to all 

geologists, as they demonstrate a wide variety of sedimentary structures and fabrics that were 

deposited in tropical epeiric seas.  Arbuckle Group carbonates show a variety of peloidal, oolitic, 

fossiliferous, stromatolitic, and brecciated facies that provide important insights into the 

depositional history of the “Great American Carbonate Bank” (Taylor et al. 2012).  Simply put, 

these deposits are an exceptional natural laboratory for the sedimentary geologist.  Siliciclastic 

deposits are also common in the Simpson and Arbuckle Groups, with shoreface sands and 
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siltstones forming “bookends” to formation boundaries.  The scientific importance of the 

Arbuckle region also extends into the realm of structural geology, where geologic cross sections 

(Fig. 1) of the Ardmore Basin, Arbuckle Anticline, and Washita Valley demonstrate overturned 

strata, extensive reverse faulting, and a series of major synclines and anticlines at a variety of 

scales.  Pennsylvanian age tectonic features are just another example of why the Arbuckle 

Mountains is an excellent natural laboratory for field geologists.  We hope to convey some of 

that importance to the attendees of this 2015 ISOS pre-meeting field trip. 

 

Tectonic Setting of the Arbuckle Mountain Region 

 The Arbuckle Mountains contain a core of Precambrian and Cambrian basement rocks 

that are uniquely exposed in the southwest portion of the region.  These basement rocks are well-

studied and represent some of the same igneous provinces exposed in the Wichita Mountains of 

Oklahoma.  Precambrian basement extends through the subsurface between the Wichita and 

Arbuckle Mountains (Ham 1969) and underlies much of the deformed area associated with the 

uplifts.  Precambrian basement rocks (approximately 1.3 bya) in the Arbuckles are represented 

by the Tishamingo and Troy granites, which vary from coarse to fine-grained, and are rich in 

microcline and biotite (Taylor 1915).  These are overlain by the Cambrian Colbert rhyolite 

group, which consists of extrusive rhyolite flows and tuffs, together with beds of agglomerate 

and sills of diabase (Finnegan and Hanson 2014; Hanson et al. 2014).  Details of the basement 

rocks of Oklahoma, including their petrology, distribution, and origin were most recently 

discussed by Pucket et al. (2014). 

 The uplift of the Cambrian and Ordovician strata in the Arbuckles is associated with the 

Ouachita Orogeny (Viele and Thomas 1989), a mountain building event in the Pennsylvanian 

and Permian caused by collision of  the Yucatan terrane, which is part of present day Mexico, 

but was at that time attached to Gondwana, with the Laurentian craton.  The Ouchitan tectonic 

system is extensive, and ranges from Alabama (Black Warrior Basin) through Arkansas and 

Oklahoma (Wichitas and Arbuckles), and then southwest into Texas (Llano, Marathon, Solitario 

Uplifts).  As a result of Ouchita tectonics, the Arbuckle mountain region exposes a series of fold 

and thrust belt structural features, such as the Arbuckle Anticline (Figs. 1, 2), Mills Creek 

Syncline, Ardmore Basin, and Washita Valley.  A detailed analysis of all these structural features 

is beyond the scope of this field trip, but there are some important details to note. 

 The most intensely deformed part of the region is the Arbuckle Anticline (Figs. 1, 2), a 

faulted anticline that is overturned to the north.  The faulted portion of the Arbuckle Anticline 

contains a graben that is filled with Pennsylvanian synorogenic molasse sediments (Collings 

Ranch Conglomerate).  The Collings Ranch Conglomerate is structurally deformed into a 

synclinal fold, indicating that deformation continued after deposition.  The core of the anticline 

consists of the Cambrian Colbert Rhyolite Group, with Upper Cambrian and Ordovician 

carbonates flanking the rhyolites.  The fault axis is located near the East Timbered Hills region, 

offsetting volcanics on either side of the fold.  Just south of the Arbuckle Anticline lies the 

Ardmore Basin, a downwarped remnant of the Southern Oklahoma Aulacogen (Brewer et al.  
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TEXT-FIGURE 1.—Structural cross-section of the Arbuckle Mountains region along I-35, between Davis 

and Ardmore (modified from Ham 1969).  Line of cross section shown in Figure 2. 

 

 

1989), which includes over 10,000 meters of Cambrian – Pennsylvanian-age strata.  The overall 

structure is of a large, faulted syncline, punctuated by smaller anticlines.  Mississippian and 

Pennsylvanian rocks in the Ardmore Basin dip between 45-90° to the northeast, and include the 

Hoxbar, Deese, Noble Ranch, and Dornick Hills Groups (Suneson 1996).  Much of these 

deposits consist of conglomerates and shales that record the extensive input from the adjacent 

Ouchita event.  As part of the larger Southern Oklahoma Aulacogen system, the Ardmore Basin 

is central to our discussion of the Cambrian-Ordovician carbonates in central Oklahoma. 

 

Formation of the Southern Oklahoma Aulacogen 

 Approximately 550 million years ago, the granitic basement rocks (Tishamingo Granite) 

of central Oklahoma begun to undergo extensional stress associated with the rifting of Iapetus 

and development of a failed continental rift (Southern Oklahoma Aulacogen, [SOA], or 

Anadarko Basin).  The faults bounding the SOA were northwest trending, and the structure 

extended in a zone across south-central Oklahoma, and into the panhandle of Texas.  The 

Washita Valley fault zone, for example, was a rift-forming normal fault that separated the 

subsiding aulacogen in the south from the craton to the north (Fig. 2).  During the Middle 

Cambrian, continued extension led to the infilling of the SOA with the volcanics of the Colbert 

Rhyolite Group.  Suneson (1996) noted that this igneous activity was concentrated in southern  
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TEXT-FIGURE 2.—Generalized geologic map of the Arbuckle Mountains region between Davis and 

Ardmore (modified from Ham 1969).  Abbreviations correspond to units shown in Figure 1, dotted line is the 

line of cross section. 

 

Oklahoma because the basement rock had been weakened by faulting associated with the rifting.  

Cooling and contraction of the Cambrian rhyolites potentially led to additional subsidence that 

allowed the Southern Oklahoma Aulacogen to be a major depocenter in the Ordovician (Suneson 

1996). Between the Late Cambrian and Early Devonian, subsidence of the aulacogen allowed for 

extensive accumulation of marine limestones, sandstones, and shales (e.g., Arbuckle and 

Simpson Groups).  Cambrian and Ordovician strata of Oklahoma were deposited in a broad 

epeiric sea (Oklahoma Basin) that extended across most of the state (Johnson 1991; Carlucci et 

al. 2014).  The Oklahoma Basin intersected the margins of the SOA, where deeper water 

sedimentation was dominated by carbonate interbedded with sandstone and shale.  Most authors 

(e.g., Longman 1982a, b; Johnson 1991) have considered the Southern Oklahoma Aulacogen 

(SOA) to be the depocenter of the Oklahoma Basin, as subsidence rates and sediment thicknesses 

are considerably higher than in shallow-ramp to platform environments outside the SOA.  To the 
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north, the Oklahoma Basin was bordered by the stable Arbuckle platform (Longman 1982b), 

which was a desert region that likely supplied wind-blown sand deposited as sheets into the 

SOA.  In the early to middle Cambrian, the craton was deeply eroded.  Input of siliciclastics into 

the SOA was temporarily suspended during a major transgression in the late Cambrian which 

established the broad epeiric sea across vast areas of Oklahoma, and facilitated deposition of the 

Arbuckle Group (St. John and Eby 1978; Johnson et al. 1984).  In the lower to middle 

Whiterockian, Simpson Group deposition began when the carbonate shelf that bordered the SOA 

was exposed (McPherson et al. 1988).  Wind-blown sand was reworked and mantled the 

carbonate platform (Johnson et al. 1988), and was eventually overlain by marine shale and 

carbonate.   

 After the initial infilling of the aulacogen in the Ordovician, subsidence developed again 

in the Late Devonian to Mississippian, accumulating thick deposits of marine shale (e.g., 

Woodford, Delaware Creek, and Goddard shales).  In the Pennsylvanian and Permian, uplift of 

the entire region led to the development of many previously mentioned tectonic features 

(including the Arbuckle Mountains themselves), and an angular unconformity between 

Ordovician-Mississippian and Pennsylvanian strata. 

 

Paleozoic Stratigraphy of the Arbuckle Mountains 

 The Paleozoic stratigraphic succession of the Arbuckle Mountains (Fig. 3) comprises a 

thickness of more than 3,000 meters (10,000') of sediments ranging in age from Early Cambrian 

to Pennsylvanian, recording some 200 million years of geologic time.  It is arguably one of the 

most complete and thickest Cambrian-Ordovician successions in central North America. The 

following summary provides an overview of stratigraphy and facies of this classic succession 

and it incorporates the litho- and biostratigraphic research of many previous workers, most 

notably Taff (1902), Edson (1927), Decker (1931, 1933, 1935, 1941), Decker and Merritt (1931), 

Hendricks et al. (1937), Wengerd (1948), Cardott and Chaplin (1963), Amsden (1967), Ham 

(1969), Ham and Amsden (1973), Amsden and Sweet (1983), Sprinkle (1982), Fay et al. (1982a, 

b), Longman (1982a, b), Finney (1986, 1988), Fay (1989), Ethington et al. (1989), Derby et al. 

(1991), Wilson et al. (1991), Johnson (1992, 1997), Amati and Westrop (2004, 2006), Goldman 

et al. (2007), Leslie et al. (2008), Bergström et al. (2010), Rosenau et al. (2012); Carlucci et al. 

(2012, 2014).  Average stratigraphic thicknesses given by Fay (1989) are used in the following 

descriptions. 

 At the base of the succession resting unconformably upon Proterozoic basement is the 

Colbert Rhyolite, now dated radiometrically as early Cambrian age (525 Ma).  This basal 

igneous rock is nonconformably overlain by the Upper Cambrian Timbered Hills Group; the 

latter is comprised of about 73 meters (240') of arkosic, glauconite-bearing Reagan Sandstone 

and 32 m (105') of Honey Creek Limestone.  Above is a thick succession (2,073 m; 6800') of 

predominantly massive, shallow-water, dolomitic and frequently cherty carbonates with a variety 

of sedimentary structures indicative of peritidal to shallow subtidal deposition.  The Arbuckle 

Group strata are roughly dated on the basis of trilobites and other megafossils as being of Late  
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Cambrian (Furongian) and Early Ordovician (Tremadocian-Floian) age.  The Cambrian portion 

of the Arbuckle Group shows a three-fold division with lower and upper dark bluish gray, 

massive carbonates of the Fort Sill Limestone (47 m; 155') and Signal Mountain Formation 

(126.5 m; 415').  They are separated by a thick, pinkish to ocherous yellow dolostone of the 

Royer Formation (219 m; 717').  The Signal Mountain Formation may span the Cambrian-

Ordovician boundary. 

 

TEXT-FIGURE 3.—Stratigraphic 

nomenclature of the Paleozoic as 

exposed in the Arbuckle Mountains and 

Black Knob Ridge regions. Data 

compiled from Derby et al. (1991), Stitt 

(1991), Johnson and Cardott (1992), 

Bauer (1994), Johnson et al. (1994), 

Babcock et al. (2005), Goldman et al. 

(2007), Bergström et al. (2008), Rosenau 

et al.(2012).  
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 The Lower Ordovician portion of the Arbuckle Group itself averages nearly a mile in 

thickness (1653 m; 5422') and includes in ascending order, the Butterly Dolostone (90 m; 297'), 

McKenzie Hill Formation (274m; 900'), Cool Creek Formation (396 m; 1300'), Kindblade 

Formation (430 m; 1410'), and West Spring Creek Formation (462 m; 1515').  These carbonates 

are exposed on both the north and south flanks of the Arbuckle Mountains, although they are 

disturbed by faulting in some areas.  The Cool Creek Formation (stop 1) displays excellently 

preserved peritidal indicators including stromatolites, oncoids, and flat-pebble conglomerates.  

Large stromatolites are also typical of the upper beds of the West Spring Creek Formation 

slightly below its contact with the Simpson Group.  Overall, the Arbuckle Group is the 

expression of a long ranging gradually subsiding passive margin of Laurentia, the "Great 

American carbonate bank". 

 

Simpson Group   

 The fully exposed Middle-Upper Ordovician strata unconformably overlying the upper 

part of the Arbuckle Group are assigned to the Simpson Group, Viola Group and Sylvan Shale. 

These strata are the primary focus of this trip and hence are discussed in somewhat greater detail. 

 The widespread Simpson Group, named for exposures near the village of Simpson, 

presently called Pontotoc (Taff 1902), is a highly fossiliferous, mixed carbonate and siliciclastic 

succession about 732m (2400') thick that ranges in age from Dapingian to Sandbian (Fig. 3).  

The interval is divided into five formations, each of which, except for the basal Joins, has been 

defined as starting with a lower submature quartz-rich sandstone, overlain by shales and then 

limestones (Decker and Merritt 1931).  Altogether, this suggests a lower lowstand to early 

transgressive sand to shale succession with a maximum flooding within the lower shales, and an 

abruptly upward shallowing and "cleaning" upward succession. 

 The basal Joins Formation (up to 90 m thick) commences with a thin basal conglomerate 

that records a transgressive lag of carbonate clasts derived from erosion of the underlying West 

Spring Creek Formation.  This unit marks the overspreading of the Sauk-Tippecanoe 

megasequence boundary (or Knox unconformity, which is locally of relatively small magnitude). 

The conglomeratic beds are overlain by thin, micritic limestones and shales with a low diversity 

fossil fauna, but yielding diagnostic conodonts that are assignable to the Histiodella altifrons to 

lower H. sinuosa conodont zones (Bauer 2010).  Decker and Merritt (1931) note that these beds 

also contain common specimens of the graptolite Didymograptus artus indicating a Chazyan 

(late Dapingian- early Darriwillian) age, which is consistent with the conodont biostratigraphy.  

 The Oil Creek Formation, named for Oil Creek 14 miles SW of Sulfur, Oklahoma, is the 

thickest unit of the Simpson Group ranging from more than 91 m (300') to over 328 m (1075') 

near Spring Creek at the Daube Ranch.  It comprises a basal sand which thickens eastward from 

a feather edge in western localities to over 175 m in the eastern Arbuckles.  It locally oversteps 

the truncated Joins Formation to the north and rests directly on the West Spring Creek.  This 

basal sandy interval is overlain by a thick succession of coarse bioclastic limestones (echinoderm 

pack- and grainstones) and shales.  Beds of intraformational conglomerate are numerous as are 
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hardgrounds, many of which show encrusting bryozoans and pelmatozoan holdfasts.  A 

moderately diverse fauna (~35 species) includes ramose trepostome bryozoans, orthid and 

clitambonitacean brachiopods (Clitambonites, Dinorthis), gastropods (Lecanospira, Liospira, 

Maclurites), small bivalves, nautiloids, and leperditians.  Trilobites (especially Pliomerops) and 

rhombiferan cystoid plates are also abundant and well preserved.  Megafaunas indicate an early 

Chazyan (Darriwillian) age.  Bauer (2010) assigns the Oil Creek Formation to the mid 

Darriwilian  Histiodella sinuosa to H. holodentata conodont zones. 

 The McLish Formation named for McLish Ranch near Bromide, Oklahoma is about 102 

to 162 m (335 to 533') thick and sharply, locally unconformably, overlies the Oil Creek 

Formation. The McLish comprises a basal unit (Burgen Member) of up to 12 m (40') of hard to 

uncemented quartz sand overlain in turn by thin greenish shales (6 m; 20') and earthy brownish 

limestones that pass upward into dense micritic, fenestral dove gray limestones with minor 

dolostones and greenish shales.  Overall, the unit is not highly fossiliferous, but the lower brown 

limestones yield sponges, gastropods, a limited diversity of brachiopods (Rafinesquina, 

Strophomena, Zygospira), small bivalves, and a thin zone of cystoid plates (Palaeocystites). 

Bergström (1971) and Bauer (1987) correlate the McLish formation with the Cahabagnathus 

friendsvillensis conodont Zone indicating a middle Chazyan (Darriwillian) age. 

 The Tulip Creek Formation (83-120 m; 271-394') is named for Tulip Creek near 

Springer, Oklahoma, and again comprises a basal sandstone (Wilcox Member), overlain by a 

poorly exposed interval of soft shales and thin-bedded limestones.  A limited fauna of some 20 

species includes abundant plates of crinoids and cystoids and the typically Blackriveran 

brachiopods Pionodema and Dalmanella, a few gastropods, bivalves and nautiloids.  Rare 

conodonts, assignable to the Cahabagnathus friendsvillensis Zone (= Pygodus serra North 

Atlantic conodont Zone), suggest a late Chazyan age (Bergström 1971; Bauer 1987). 

 The uppermost unit of the Simpson Group is the Bromide Formation named for 

exposures in quarries near the small town of Bromide, which is itself named for naturally 

carbonated waters derived from aquifers in the Simpson Group.  The Bromide is richly 

fossiliferous and has been studied in detail from the standpoint of stratigraphy and paleontology 

(especially its rich echinoderm faunas; see Sprinkle 1982).  Decker and Merritt (1931) listed 

nearly 100 species including diverse brachiopods (28), bryozoans (13 species), trilobites (12), 

gastropods (11), cephalopods (8), algae, tetradiid corals and echinoderms. The latter have been 

intensively studied in the interim and now more 61 genera in 13 classes are recognized making 

the Bromide one of the most diverse Ordovician faunas (Sprinkle 1982).  Trilobite diversity in 

the Bromide has also been refined upwards (e.g., Shaw 1974; Carlucci et al. 2012; Carlucci and 

Westrop 2014) in recent years.  The Bromide Formation is notably cyclic on several scales and 

the documentation of this cyclicity is a major theme of recent papers (Carlucci et al 2014; 

Carlucci and Westrop 2014) and of this field excursion. 

 The Bromide is traditionally divided into two members, the Mountain Lake and 

Pooleville (Cooper, 1956), both named for exposures along Spring Creek on the Daube Ranch 

(formerly Johnston Ranch) west of Ardmore.  Recent study of the Bromide (Carlucci et al. 2014) 
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has led to recognition of a third, basal sandstone member, redefinition of the other members and 

interpretation of three depositional sequences probably equivalent to the M2, M3, and M4 of 

Holland and Patzkowsky (1996).  Each commences with coarse sandstone or skeletal grainstone 

that passes upward into a shaly interval and then into a progradational shale to thinly bedded 

wacke- and packstone, and in some cases peritidal lime mudstone highstand facies. 

 As with other Simpson Group formations, the Bromide commences with widespread 

quartz sandstone which thickens toward the northeast, although originally included in the 

Mountain Lake Member this sandstone unit is sufficiently distinctive that it warrants separate 

designation and Carlucci et al. (2014) named this the Pontotoc Member.  As is the pattern with 

the other formations, the sandstone passes upward into a greenish gray, chloritic shale with thin 

fossiliferous limestones.  A ~1m shale thin limestone interval overlying a distinctive thick 

packstone ledge has yielded a prolific echinoderm fauna.  This "Lower Echinoderm Zone" (Fay 

and Graffham 1969) has been identified in 16 localities in the Arbuckles (Sprinkle 1982) and 

more tentatively in the Criner Hills. More than 6,000 complete echinoderm thecae have been 

collected.  More than half of those collected are Hybocrinus, another quarter the paracrinoid 

Platycystites, and in total some 30 other genera, including paracrinoids, rhombiferans, crinoids, 

edrioasteroids, asteroids and stylophorans.   

 This shale and packstone succession passes upward abruptly into an interval of thick 

grainstones and shales of the upper Mountain Lake Member.  To the north, near Fittstown this 

package of echinoderm skeletal grainstones passes laterally into thicker sandstone and sandy 

limestone package comparable to the Pontotoc Member, but more restricted in aerial distribution. 

The overlying thick upper Mountain Lake Member is comprised of thinly bedded limestones and 

shales that yield additional brachiopods, bryozoans, echinoderms and trilobites, including the 

isoteline Vogdesia.  These beds closely resemble a main mass of the interval assigned to the 

Pooleville to the south in the Criner Hills, which we have inferred, actually to be coextensive 

with the Mountain Lake Member. 

 A sharply based package of thick echinoderm grainstones occurring about 75 m above 

the base of the Bromide is identifiable at all localities and we have used it to redefine the base of 

the Pooleville Member.  It is overlain by a greenish shaly interval identified previously in the 

Arbuckles as the upper Echinoderm Zone, which has yielded several thousand echinoderms, 

mostly the paracrinoid Oklahomacystis.  As with the lower Echinoderm zone this interval has 

been widely correlated through some 15 locations in the Arbuckles. This interval is overlain by a 

shallowing upward succession of dense, burrow mottled lime mudstones and wackestones, 

typical of the Pooleville Member.  The lateral continuity of both Lower and Upper Echinoderm 

Zones, which represent highstand facies of small-scale cycles is simply an example of the overall 

continuity of many units within the Bromide and strongly suggests an allocyclic (eustatic) 

influence on their formation. 

 The upper several meters consist of fenestral, microbially laminated micrites with thin 

shales and desiccation cracks.  This interval, the Corbin Ranch submember contains thin clay 

beds some of have been shown to be K-bentonites and tentatively identified as the Deicke and 
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Millbrig beds, the most widespread bentonites in the Ordovician.  Thus, this interval is identified 

as equivalent to very similar and extraordinarily widespread micritic facies of the upper 

"Blackriveran" in the Mississippi Valley (Plattin Fm) Appalachian Basin (Lowville Fm), 

Kentucky (Tyrone Fm), Tennessee (Carters Fm), and elsewhere.  It is clearly of Turinian (upper 

Sandbian) age based upon conodonts, as well as bentonites.   These indicators also indicate 

correlation of the Corbin Ranch with the upper portion of the Womble Shale in the allochthonous 

deep water facies of the Ouachitas, as at the Katian stratotype section at Black Knob Ridge in 

Atoka. 

 A most important new discovery of our research is that the Pooleville Member appears to 

be truncated progressively southward into the Oklahoma Aulacogen, such that the overlying 

Viola Group rests on progressive lower Pooleville beds and ultimately on strata of the upper 

Mountain Lake Member.  This pattern suggests, either, that there was a reversal of topography 

following deposition of the Bromide or that other process of deeper ramp corrosion, erosion and 

bypass thinned and/or removed upper Bromide strata prior to deposition of the Viola Springs. 

This pattern requires further study. 

 

Viola Group and Sylvan Shale 

  Throughout much of the Arbuckles, the Viola Group, named for exposures near Viola, 

Oklahoma (Taff 1903), is a ~213 m (700') thick succession of resistant, ridge-forming, dark gray, 

but whitish weathering limestones.  The Viola is very widespread with representation as far north 

as South Dakota and as far west as the subsurface of Colorado (Wengerd, 1948).  In places it 

rests unconformably on strata as old as the Arbuckle Group at a disconformity that may represent 

the M4-M5 sequence boundary of Holland and Patzkowsky (1996).  This unit represents much of 

the Katian Stage, roughly the Chatfieldian and Cincinnatian of North American terminology. The 

majority of the Viola Group is assigned to the Viola Springs Formation, thin- to medium-bedded, 

sparsely fossiliferous, commonly cherty, laminated calcisiltites with thin, dark shaly partings. 

Bedding can be notably hummocky (HCS?) and nodular in some portions of the formation.  Thin 

shaly beds yield graptolites, cryptolithine trilobites and small brachiopods at many levels.  The 

upper  ~25-30 m of medium to thick-bedded packstone and grainstone is assigned to the Welling 

Member; it yields a diverse benthic fauna of bryozoans, brachiopods and trilobites. The base of 

the Welling may represent a disconformity, perhaps a mid-Richmondian unconformity. 

  A rather different facies aspect of the Viola Springs Formation is represented in the 

northern Arbuckles at Fittstown (also termed Highway 199 or Murray Lane in the literature, stop 

4 here). Here, the lowest 80 cm is distinctively set off as a non-cherty interval with shaly 

wackestone, rich in graptolites of the upper Climacograptus bicornis Zone.  The next 15 m of the 

Viola Springs Formation (member 4 of Wengerd 1948) is more typical cherty, thin-bedded, and 

buff weathering.  Higher beds are less cherty and include pelmatozoan rich pack and grainstones 

(20 m, member 3 of Wengerd) overlain by light gray weathering, slightly argillaceous, highly 

fossiliferous wacke- and packstones (members 1 and 2).  These beds yield graptolites at some 

levels, indicative of the Diplacanthograptus spiniferus Zone as well diverse bryozoan, coral, 
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brachiopod and trilobite faunas.  The latter have recently been studied in detail by Amati and 

Westrop (2006).  Amati (2014) recognized two distinctive faunas, separated by a relatively 

abrupt transition at about 32 meters above the base of the Viola Springs Formation at Fittstown. 

Wengerd (1948) was able to trace members throughout the Arbuckle Mountains, despite changes 

in thickness and facies. 

 The Viola Springs strata yield a succession of graptolites that have permitted a detailed 

biostratigraphy (e.g., Finney 1986, 1988).  Although there is some ambiguity, the Viola Springs 

at the Fittstown section is dated from the C. bicornis Zone (uppermost Sandbian) to the Katian 

D. spiniferus Zone (see further discussion of Stop 4).  In sections along I-35 the succession 

ranges upward to the Amplexograptus manitoulinensis of the upper Cincinnatian (Richmondian). 

Recent studies of carbonate carbon isotopes have also revealed a series of positive isotopic 

excursions that have tentatively been identified as the GICE and Kope Excursion (Bergström et 

al. 2010). The upper Cincinnatian (Richmondian) Waynesville excursion was tentatively 

identified in the Welling Formation. 

 Based upon graptolite biostratigraphy, the Viola Springs is approximately equivalent to 

the Bigfork Chert of the allochthonous succession in the Ouachitas as at Black Knob Ridge (see 

Stop 4). The latter shows facies similarities with the distal Viola Springs, including a succession 

of thinly bedded chertified limestones and nodular cherts and minor shales. The sparse benthic 

fauna is typified by cryptolithine trilobites at some levels. 

 The Viola Group is conformably overlain by some 180 m (600') of dark fissile mudrock 

(Wengerd 1948), assigned to the Sylvan Shale (stop 6). The latter has been dated as late Katian 

on the basis of graptolites of the Styracograptus tubuliferus to Dicellograptus ornatus zones 

(Dworian 1990).  It is approximately equivalent to the widespread Shale in the Ouachitas and the 

Mannie Shale of the Appalachian Basin.  It is overlain sharply and probably unconformably by 

thin widespread oolitic limestone of the Keel Formation in Oklahoma and laterally equivalent 

Noix Oolite in the Misssissippi Valley both of Hirnantian age and probably representing initial 

transgression following the late Ordovician glacioeustatic lowstand.  

 

Post-Ordovician Strata 

  Silurian and Lower Devonian shaly carbonates are assigned to the Hunton Group, which 

totals 40 to 70 m (130-230'). The Silurian succession in the Arbuckles includes the Llandovery 

age Cochrane and early Wenlock Clarita carbonates, each about 4 m thick, separated by a thin 

but widespread shale tongue, and the overlying Henryhouse Formation 58 m (191') of mixed 

siliciclastics and limestones. Locally, these rocks are highly fossiliferous with well-documented 

brachiopod, trilobite and echinoderm faunas (Amsden 1975). 

 Devonian strata are thin and highly incomplete but include the Lower Devonian 

(Lochkovian) Harragan Formation,~8 m (25') thick in the southern Arbuckles and the overlying 

Bois d'Arc, 2.5m (8') thick, both marly, slightly cherty limestones and shales noted for diverse 

brachiopod and trilobite assemblages.  These beds are unconformably overlain by the Upper 

Devonian (Famennian) Woodford Shale, black shales and cherts, up to 85 m (280') thick.  The 
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Lower to Middle Mississipppian consists of a relatively thin carbonate succession (Sycamore 

Limestone, 67 to 113m m, 380').  It is overlain by thick Middle and Upper Mississippian 

siliciclastics (the Delaware Creek Shale and the Chesterian Goddard Formation).  Both are 

comprised of shales and sandstones, together totaling more than half a mile in thickness (Fay 

1989).  This shift toward much thicker siliciclastic sediments records the onset of early phases of 

reactivation in the Anadarko Basin (Oklahoma Aulacogen) and uplift of the Wichita Mountains 

to the south.  Finally, the Pennsylvanian Collings Ranch Formation consists of more than 900 m 

(3000') of reddish, coarse polymictic conglomerate, representing Ouachita syntectonic molasse 

sediments. 

FIELD TRIP STOPS 

 Figure 3 shows the Upper Cambrian to lower Silurian stratigraphy with important global 

and North American stage and series boundaries.  The majority of the field trip stops (3, 4, 7, 8, 

11, and 12) focus on deposits that formed during the Sandbian-Katian (Upper Ordovician) 

stages, including the Global Standard Stratotype and Point (GSSP) and auxillary section for the 

base of the Katian (Goldman et al. 2007), and a newly established reference section for the 

Bromide (Carlucci et al. 2014).  Other stops expose strata above the Katian (Hirnantian), and 

below the Sandbian (Dapingian-Dariwillian, Tremadocian-Floian), and even into Stage 10 of the 

Upper Cambrian.  Field trip stops in relation to important city and county boundaries, and major 

highways are shown in Fig. 4. 

 

DAY 1 

Stop 1: Turner Falls Overlook and the Cool Creek Formation 

 Turner Falls, a well-known attraction for visitors to central Oklahoma, lies just west of 

US Highway 77 in the East Timbered Hills region (see Fig. 1). Stop 1 is located at an overlook 

looking back towards the recreational area of Turner Falls.  The falls are interesting from a 

geological perspective because they are building outward along an accreting travertine precipice, 

rather than eroding inwards like most waterfalls (Ham 1969).  In the Pleistocene and continuing 

into the present day, Honey Creek has been down cutting into Arbuckle Group limestone and 

storing calcium carbonate in solution that is re-precipitated onto the precipice. The falls are 

currently in balance between travertine development and mechanical erosion from down cutting, 

although, during the middle Pleistocene, it appears that Honey Creek cut a deep wedge into its 

depositional platform (Ham 1969). 

 In the East Timbered Hills surrounding Turner Falls, exposures of the Colbert Rhyolite 

Group (see line of cross section on Figure 2) form a scenic vista.  The Turner Falls overlook 

provides a perfect opportunity to see exposures of the some of the early core deposits of the 

Arbuckles, overlain by younger Cambrian limestone.  The overlook is located just south of the  
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TEXT-FIGURE 4.—Field trip stops (1-12) with county, town, and state boundaries. a, close up view of all 

localities in the Arbuckle Mountains. b, broad view, including localities outside the Arbuckles. 
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Washita Valley Fault (Fig. 2), immediately to the southwest is a hill that forms the rhyolitic core 

of the Arbuckle Anticline.  Between the core of the anticline and Turner Falls are folded and 

faulted strata of the Arbuckle Group.  The overlook exposes the Cool Creek Formation of the 

Arbuckle Group (Fig. 3), which is separated by the Mackenzie Hill Formation (exposed across 

the valley) by a fault trace that parallels the Honey Creek valley (Cardott and Chaplin 1993).  

Many of these fault traces are present in the East Timbered Hills, and they represent splays from 

the Washita Valley or Chapman Ranch fault zones.  As noted earlier, the Washita Valley fault 

zone is a normal fault that likely developed during early rifting and formation of the Southern 

Oklahoma Aulacogen in the late Precambrian and early Cambrian. 

 The Lower Ordovician (Tremadocian) Cool Creek Formation is one of the lower units of 

the Ordovician portion of the Arbuckle Group (Fig. 3).  Arbuckle Group deposition varies from 

subtidal to supratidal, and took place on a low gradient carbonate ramp on the southern edge of 

the North American craton (Wilson et al. 1991).  The Arbuckle Group consists of eight 

formations (some omitted from Fig. 3) that total nearly 2400 m (8,000 feet) in the SOA, with 

extensive dolomitization across most of the units.  Wilson et al (1991) and Cardott and Chaplin 

(1993) characterized the shallowing upward cycles (Fig. 5) that are prevalent in much of the 

Arbuckle Group.  They identified common components in the sub- inter- and supratidal 

environments of individual cycles (idealized succession shown in Figure 6).  The top of each 

cycle is typically disconformable, and overlain by thin transgressive marine beds that represent 

backstepping prior to successive parasequence development. 

 Across from the gift shop at stop 1, is a roadcut through the Cool Creek Formation that 

shows a series of facies and sedimentary structures associated with peritidal cycles.  Facies at 

stop 1 include: stromatolitic and thrombolitic boundstone, intraformational mud-supported 

breccias, oolitic grainstone, bioturbated mud- wacke- packstone, heterolithically bedded units, 

and chert-rich mud- and boundstones.  Figure 5 shows a series of facies through a portion of a 

shallowing upward cycle.  At the base, is an intraformational breccia of lime mudstone and algal 

boundstone clasts. This is directly overlain by a thin algal boundstone and then a heterolithically 

bedded unit of micrite and quartz silt.  At the top of the cycle is a micrite with chert nodules and 

bands, which likely represent evaporative conditions (see explanation below).  The boundstone 

above the chert facies likely represents the start of a new cycle, and a switch to lower intertidal 

or subtidal conditions.  

 Bedded and nodular evaporates (anhydrite) have been identified in the Cool Creek 

Formation in the subsurface (St. John and Eby 1978), although in outcrop these same facies have 

been extensively replaced by chert.  Halley and Eby (1973) and St. John and Eby (1978) both 

suggested that hypersaline conditions were common during Cool Creek Formation deposition, 

based on a number of indicators, including: syndepositionally broken ooids, length-slow 

chalcedony, and high-relief stromatolites that occupy lower intertidal or subtidal conditions 

devoid of grazers.  There is also direct evidence of “vanished evaporites” in the Cool Creek 

Formation.  St. John and Eby (1978) discovered evidence of pseudomorphs and microscopic 

molds in all chert nodules they thin sectioned.  SEM studies also revealed evidence of very small  
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TEXT-FIGURE 5.—Outcrop photograph from the Cool Creek Formation (stop 1), across from the gift shop 

at the Turner Falls overlook.  See text for explanation of facies. GPS:  34°25'36.44"N, 97° 8'42.32"W. 

 

anhydrite and celestite crystals that escaped silicification (Ragland and Donovan 1986).  Macro-

scale evidence of replacement of evaporites includes solution-collapse breccias in multiple 

intervals of the Cool Creek (St. John and Eby 1986). 

 

Stop 2: I-35 Overlook, Kindblade Formation, Collings Ranch Conglomerate 

 The scenic view at stop 2 shows the Bromide Formation (see Johnson et al. 1984, fig. 8) 

exposed just to the north along I-35N, in fault contact with exposures of the northward dipping 

strata of the upper Arbuckle group (Kindblade and West Spring Creek formations) exposed 

immediately to the south. 

 Limestone beds of the Kindblade Formation (Arbuckle Group) are exposed at the scenic 

I-35 overlook at stop 2.  The Kindblade is the middle unit of the Upper Arbuckle Group (Fig. 3), 

and was deposited in supra to subtidal marine environments.  Loch (2007, fig 1) identified two 

separate facies belts: hypersaline supratidal to shallow subtidal marine limestones, and more 

distal, faunally diverse, open marine limestones. Supratidal to shallow subtidal deposits are  
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TEXT-FIGURE 6.—Idealized shallowing upward cycle from the Cool Creek Formation (Arbuckle Group) 

(modified from Wilson et al. 1991; Cardott and Chaplin 1993).  Figure 5 shows facies from a portion of this 

cycle. 

 

dolomitized across much of the state (Ross 1976; Loch 2007). In comparison to the underlying 

Cool Creek Formation (stop 1), the Kindblade represents a return to more “open” marine 

conditions, with comparatively fewer sedimentary structures indicative of evaporative conditions 

(e.g., pseudomorphs and oolites).  

 

 
 

TEXT-FIGURE 7.—Limestone dissolution megabreccia in the Kindblade Limestone, stop 2 (GPS: 

34°25'34.26"N, 97° 8'4.29"W). 
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 The outcrop consists of thin- to thick-bedded subtidal marine wackestones, packestones, 

and locally stromatolitic boundstones.  Oolitic and peloidal packstones often form sharp 

boundaries with silt-laminated, digitate boundstones.  Fay (1989) described three distinct facies 

associations that can be seen in this outcrop, which likely record a larger–scale regressive cycle.   

Lower deposits are characterized as thin to medium bedded, bioturbated lime mudstones, with 

thin skeletal grainstones interpreted as tempestites.  The middle association consists of oolitic 

wackestone and packstones, interbedded with lime mudstone.  Fay (1989) and Loch (2007) 

interpreted this unit as being shallower than the lower unit, possibly representing transport of 

ooid shoal allochems into a more restricted, lagoonal environment.  The absence of oolitic 

grainstones (expected in a high energy shoal) is consistent with this hypothesis.  The uppermost 

association consists of thick-bedded lime mudstones with dolomitic partings, stromatolitic 

boundstones, and a decrease in faunal diversity.  Most authors (Fay 1989; Osleger and Read 

1991: Loch 2007) consider this lithology consistent with restricted circulation.  Therefore, 

lagoonal deposits are a likely explanation, but the Kindblade probably did not reach intertidal 

conditions. 

 Another interesting feature of the Kindblade Limestone at this exposure is a megabreccia 

(Fig. 7) with a framework of randomly oriented boulders in an otherwise undeformed sequence 

of strata.  Tapp (1978) showed that insoluble clay layers encased the boulders and were nearly  
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90ᵒ to layering. This strongly suggests that the megabreccia formed by dissolution of limestone 

along joints during the Pennsylvanian, and subsequent collapse of the boulders during Ouchita 

uplift.  Thus, it is interpreted as both a karst and tectonic feature. Stop 2 also exposes one of the 

best examples of the Pennsylvanian Collings Ranch Conglomerate (CRC) in the Arbuckles.  The 

CRC is an interesting unit because it is a coarse orogenic product that records evidence of the 

faulting, folding and uplift in the late Pennsylvanian.  The CRC is a limestone boulder 

conglomerate (polymict and grain-supported in most exposures) that was deposited in an area 

trending from the NW-SE as the Arbuckle Mountains were still rising (Cardott and Chaplin 

1993).  The unit crops out in the northern portion of the Arbuckle Anticline along the Washita 

Valley Fault zone.  The conglomerate is unconformable with the underlying Bromide and Viola 

Groups (seen in stop 7 of this trip), and is preserved as a NW-SE trending, fault-bounded graben.  

Provenance studies (e.g., Nick and Elmore 1990) have shown that the limestone clasts mostly 

originate from various formations within the upper and lower Arbuckle Group, with sandstone 

and limestone clasts derived from the Simpson Group present in small quantities.  The lack of 

rhylolitic clasts suggests that the core of the Arbuckles was not exposed during Pennsylvanian 

erosion, or possibly that the drainage area did not include the Cambrian Colbert Rhyolite 

(Cardott and Champlin 1993). 

 Individual cycles of poorly sorted, graded, and grain-supported clasts are well exposed in 

outcrop at stop 2.  These deposits are considered by most authors to have formed as debris and 

mud flows in an intermontane alluvial fan complex, with both sheet and channel geometries.  

Cardott and Champlin (1993) suggested that matrix-starved intervals with lenticular geometries 

represent a more proximal braided stream environment, suggestive of rapid channel shifting. 

 

DAY 2 

Stop 3: Black Knob Ridge, Katian GSSP, Womble Shale, Bigfort Chert, and Polk Creek 

Shale. 

The Upper Ordovician rocks that crop out in the Ouachita Mountains of west-central 

Arkansas and southeastern Oklahoma are composed primarily of graptolite-rich shales associated 

with deep-water limestones and cherts (Ethington et al. 1989). These strata were deposited in the 

deep marine environment of the Ouachita Foredeep off the southern margin of Laurentia (Finney 

1988). The rich graptolite faunas have been used traditionally to correlate these rocks with other 

Upper Ordovician successions in North America and around the world. A correlation chart for 

the main lower Upper Ordovician graptolite zonal successions discussed in this field guide is 

provided below. 

In southeastern Oklahoma Upper Ordovician strata are exposed along Black Knob Ridge, a low 

narrow ridge at the extreme western end of the Ouchita Mountains (Hendricks et al. 1937; 

Finney 1988).  The units exposed along Black Knob Ridge are, in ascending order, the Womble 

Shale, Bigfork Chert, and Polk Creek Shale. The base of the Ordovician succession is in fault 

contact with the Pennsylvanian Atoka Formation and the Silurian age Blaylock Sandstone   
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TEXT-FIGURE 8.—Locality map for the Black Knob Ridge Section. The section is located 

5 kilometers north of the town of Atoka, SW1/4, Section 31, T. 1S, R. 12E, 

Atoka County, Oklahoma; 34° 25' 39.08” N, 96° 04' 3.78” W. From Goldman et al., 2007. 
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disconformably overlies the top of the sequence (Ethington et al. 1989).  An excellent exposure 

of the Womble to Polk Creek succession occurs on a hill slope approximately 5 kilometers north 

of the town of Atoka, SW1/4, Section 31, T. 1S, R. 12E, Atoka County, Oklahoma; 27˚ 25.9’ N, 

96˚04.5’ W (Figure 8). This exposure, which we refer to as the Black Knob Ridge (BKR) section 

(Figure 9A, B), extends along strike for several hundred meters, is readily accessible, contains a 

continuous graptolite succession across the Climacograptus bicornis – Diplacanthograptus 

caudatus zonal boundary, and yields biostratigraphically important conodonts and chitinozoans.  

The International Subcommission on Ordovician Stratigraphy (ISOS) recommended that 

the first appearance of Diplacanthograptus caudatus at the Black Knob Ridge section be used as 

the GSSP of the middle stage of the Upper Ordovician Series. The ISOS also recommended the  

 

 

Global 

Stages 

Laurentia 

(Oklahoma & Eastern USA) 

Pacific Faunal 

Province 

(General) 

Australia 

Laurentia 

(Scotland) 

Katian 

Amplexo. manitoulinensis Styraco. 

tubuliferus 

Dicello. gravis Pleuro. 

linearis Geniculo. pygmaeus Dicrano. kirki 

Diplacantho. 

spiniferus 

D. spiniferus 

Diplacantho. 

caudatus 

Diplacantho. 

spiniferus Dicrano. 

clingani 

O. rudemanni 

Diplacantho. 

caudatus 

Corynoides 

americanus 

Diplacantho. 

lanceolatus 

Sandbian Climaco. bicornis Climaco. bicornis Ortho. calcaratus 
Climaco. 

bicornis 

 

Table 1.—Correlation of Upper Ordovician biozones discussed in this field guidebook. Key references 

used in constructing this chart are Finney (1986), Goldman et al (2007), Riva (1969, 1974), VandenBerg 

and Cooper (1992), and Zalasiewicz et al. (1995). 

 

  

designation Katian Stage for this stage, a name derived from the nearby Katy Lake (now drained) 

near the southern end of Black Knob Ridge (Bergström et al. 2006). These decisions were 

ratified by the ICS in 2006 (Bergström et al. 2006). 

            At the BKR section, approximately 20 meters of dark, graptolite-rich Womble Shale are 

exposed. The lower 15 meters is composed of blocky, white to chocolate brown weathering 

mudstone, interbedded with fissile black shale, siliceous limestone, and bedded chert. Within this 

unit, approximately 15 meters below the base of the Bigfork Chert is a distinct channel-like 

feature that is filled with 80 cm of soft, fissile, dark gray shale with abundant specimens of 

Dicellograptus sp. (Figure 9C). This feature might be interpreted as the M3-M4 sequence 

boundary of Holland and Patzkowsky (1996).  About five meters below the Bigfork Chert the  
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TEXT-FIGURE 9.—The Black Knob Ridge Section. a, The Upper Womble Shale and Bigfork Chert at the 

Black Knob Ridge Section. 1, The contact between the two units is placed at the first organic-rich, siliceous 

shale that forms a prominent ledge. This bed is extremely rich in graptolites and conodonts. 2, The base of the 

Diplacanthograptus caudatus Zone. The yellow dashed line is 4.0 meters above the base of the Bigfork Chert 

and marks the FAD of D. caudatus.  b, Steeply dipping uppermost Womble Shale and Bigfork Chert. Up-

section is to the right. c,  Channel in the upper Womble Shale. d, Distinctive shale package at the top of the 

Womble Shale. This 3.65 meter intervals contains two K-bentonites with ages of 453.98 and 453.16 mya, 

respectively (Sell et al. 2013). 

 

mudstone becomes more fissile, thinner bedded, and platy. These beds are in turn overlain by a 

distinct 3.65 meter package of soft, friable shale that has a 4 cm K-bentonite at its base and 

another 10 cm K-bentonite at 1 meter above the unit base (Leslie et al. 2008; Figure 9D herein). 

These beds have zircon phenocrysts that yielded U/Pb ages of 453.98 Ma and 453.16 Ma, 

respectively (Sell et al., 2013). These age data suggest that in addition to their correct 

biostratigraphic position (upper C. bicornis Zone), the Womble K-bentonites at the BKR section 

are potentially the Deicke and Millbrig K-bentonites (Sell et al. 2013). These dates also fit well 

with the most recent age of the base of Katian, 453 Ma, the date given in the latest Ordovician 

time scale by Cooper et al. (2012). It is possible that this shale package correlates either with the 

upper Pooleville Member of the Bromide Formation at Highway 99, which also contains two K-

bentonites (Leslie et al. 2008), or the lowermost 0.8 meters of the Viola Springs Formation at 

that same section (see below).  
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Conformably overlying the Womble Shale are approximately 145 meters of Bigfork 

Chert (Figures 9). The contact between the two units appears gradational. The base of the 

Bigfork Chert is a 0.5 meter interval of hard, splintery black shale that contains abundant 

conodonts and chitinozoans. The Bigfork Chert is composed of nodular and bedded chert, and 

siliceous mudstone intercalated with black shale and siliceous limestone.  Because limestone 

beds are absent in the shale below and above the Bigfork Chert, its upper boundary is placed at 

the last limestone bed in the section (Finney 1988). The limestone is medium bedded, siliceous, 

fine- to coarse-grained skeletal calcarenites. Fossils include graptolites, conodonts, chitinozoans, 

sponge spicules, inarticulate brachiopods, and radiolarians (Hendricks et al. 1937) with skeletal 

fragments of pelmatozoans and brachiopods (Finney 1988).  Decker (1935) noted an abundance 

of the trilobite Cryptolithus in some beds of the Bigfork Chert at the Stringtown Quarry (BKR); 

this trilobite is also typical of the correlative Viola Springs Formation. There is no evidence of a 

depositional break within the lower Bigfork Chert at the study section. 

The Polk Creek Shale overlies the Bigfork Chert with an apparently conformable contact. 

Although the Polk Creek has not been measured at the BKR section, Hendricks et al. (1937) 

measured 43 meters at the Atoka city trash dump and Dworian (1990) recorded 32 meters from a 

locality along Black Knob Ridge south of the stratotype section.  Decker (1935) correlated the 

Polk Creek Shale with the Sylvan Shale (see Stop 6) and showed that both had a similar 

graptolite fauna, including Dicellograptus complanatus that indicates a late Katian age. 

The upper Womble shale contains an abundant graptolite fauna that is referable to the 

Climacograptus bicornis Zone. Diagnostic elements of this fauna include C. bicornis, C. bicornis 

tridentatus, C. cruciformis, Orthograptus whitfieldi, O. calcaratus ssp., Archiclimacograptus 

modestus, Dicranograptus spinifer, D. contortus, D. arkansasensis, Normalograptus brevis, and 

Nemagraptus gracilis. The transition between the C. bicornis Zone and the underlying N. 

gracilis Zone has not yet been found at Black Knob Ridge.  

Climacograptus bicornis, C. bicornis tridentatus, Archiclimacograptus modestus, and 

Dicranograptus arkansasensis range upward into the lowermost 3.1 meters of the Bigfork Chert. 

Orthograptus quadrimucronatus makes its first appearance 3.2 meters above the base of the 

Bigfork Chert. The base of the Katian Stage of the Upper Ordovician Series is placed at the FAD 

of Diplacanthograptus caudatus, 4.0 meters above the base of the Bigfork Chert (Figure 10). At 

this horizon, several taxa diagnostic of the D. caudatus Zone first appear. These are, 

Orthograptus pageanus, Neurograptus margaritatus, and Corynoides americanus. 

Dicranograptus hians was found 2.0 meters higher up. Diplacanthograptus spiniferus and 

Climacograptus tubuliferus debut at 9.8 and 52.5 meters, respectively, above the base of the 

Bigfork Chert (Finney 1986 and personal communication). Characteristic graptolite species from 

the Climacograptus bicornis and Diplacanthograptus caudatus zones are illustrated in Figure 11. 

Conodonts have been known from the Black Knob Ridge since Hendricks et al.’s (1937) 

description of the geology at this section. Harlton (1953) also reported the occurrence of 

conodonts at BKR.  However, as Repetski and Ethington (1977), and Ethington et al. (1989) 

reported, these early studies did not identify the conodonts, and their stratigraphic occurrences  
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TEXT-FIGURE 10.—Stratigraphic column with a range chart of graptolites, conodonts, and chitinozoans for 

the Black Knob Ridge section. The GSSP for the base of the Katian Stage is placed at the first appearance of 

D. caudatus four meters above the base of the Bigfork Chert. The C. bicornis - D. caudatus zonal boundary 

occurs high in the Amorphognatus tvaerensis conodont Zone. From Goldman et al., 2007. 

 

 

were not documented precisely.  Bradshaw (1974) identified a conodont fauna of Midcontinent 

aspect from the Bigfork Chert at BKR.  She reported occurrences to the genus-level, and 

identified a fauna of Panderodus, Belodina, Drepanodus, Oistodus, and Phragmodus from 

siliceous limestone beds.  More recently, Krueger (2002) reported on the occurrence of 

conodonts from the Stringtown Quarry approximately 3 kilometers north of the BKR section. 

The fauna that Kreuger reported from the limestone beds is also of Midcontinent aspect.    

Unfortunately, the former limestone beds in the lower part of the Bigfork at the BKR 

section are completely silicified and cannot be dissolved for conodonts. There are also well-

preserved conodonts on the dark shale bedding planes in both the Womble Shale and Bigfork 

Chert that are typical of the North Atlantic Fauna. The uppermost Womble Shale contains an 

abundant, low diversity but biostratigraphically important conodont fauna that includes elements 

of Amorphogathus tvaerensis and Icriodella cf. I. superba (Figure 10).  The presence of these 

species demonstrates that the uppermost Womble at BKR is within the B. alobatus Subzone of 

the latest A. tvaerensis Zone (Bergström 1982).  It is younger than the B. gerdae Subzone fauna 

reported elsewhere from the Womble by Repetski and Ethington (1977; Ethington et al. 1989).  

The uppermost Womble Shale at BKR also contains Periodon grandis, Drepanoistodus  
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TEXT-FIGURE 11.—Graptolites from Black Knob Ridge. 1–8, graptolites from the Climacograptus bicornis 

Zone. 1, 6, Archiclimacograptus modestus; 2, 7, Climacograptus bicornis; 3, Climacograptus bicornis 

tridentatus; 4, 5, Dicranograptus spinifer (= D. nicholsoni longibasalis); 8, Corynoides calicularis. 9–15, 

graptolites from the Diplacanthograptus caudatus Zone. 9, Dicranograptus hians and Cryptograptus 

insectiformis; 10, 11, Neurograptus margaritatus; 12, 13, Diplacanthograptus caudatus; 14, 15, Orthograptus 

pageanus. Scale bar on each photograph is 1 mm. 
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suberectus, Dapsilodus sp. aff. D. mutatus, Oistodus sp., and Panderodus sp. (Goldman et al. 

2007). 

The conodont fauna from lowermost Bigfork Chert at BKR consists of A. tvaerensis, 

Periodon grandis, Protopanderodus cf. P. liripipus, Drepanoistodus suberectus, Dapsilodus 

sp.aff. D. mutatus, Phragmodus sp., and Panderodus sp.  This fauna is nearly identical to that 

from the upper Womble, with the exception of relatively abundant specimens of P. cf. P.  

liripipus.  Of particular interest is the occurrence of two specimens of Amorphognathus sp. 

approximately 5.7 meters above the base of the Bigfork Chert (Goldman et al., 2007).  These 

specimens are morphologically very similar to A. superbus, but unquestionable identification is 

not possible from the material at hand.   

The biostratigraphically significant conodonts known from BKR suggest that the 

Climacograptus bicornis - Diplacanthograptus caudatus zonal boundary is located in the B. 

alobatus subzone of the Amorphognathus tvaerensis conodont zone (Goldman et al., 2007). This 

correlation is consistent with the graptolite – conodont zonal relationships described from Europe 

and eastern North America by Bergström (1971, 1986) and Goldman et al. (1994).   

 

Stop 4: Bromide Formation, Viola Springs Formation, Katian Auxiliary GSSP  

 The HW 99/377 section has a long history of study (e.g., Decker 1933; Wengerd 1948), 

and the locality is known in the older literature as “Murray Lane”.  The section encompasses the 

upper Sandbian and lower Katian succession, with the boundary lying somewhere within the 

lower 20 m of the Viola Springs Formation.  It was designated as an auxiliary stratotype for the 

base of the Katian (Goldman et al. 2007) because it yields diverse shelly faunas in addition to 

graptolites and conodonts.  Young et al. (2005) demonstrated the presence of a positive carbon 

isotope excursion that they equated with the GICE excursion of the Upper Mississippi Valley, 

although, as discussed below, this correlation has been disputed (Westrop et al. 2012).  The 

underlying Bromide Formation is less fossiliferous, although a recent sequence-stratigraphic 

framework (Carlucci et al. 2014) facilitates correlation with the classic localities farther to the 

south (e.g., Sutherland and Amsden 1959; Shaw 1974). 

 

Overview of the succession 

 Bromide Formation.  The HW 99 locality includes the type section of the basal Pontotoc 

Member of the Bromide Formation (Carlucci et al. 2014), which comprises a succession of 

cross-bedded to rippled sandstones and siltstones.  In platformal sites like HW 99, it represents 

the TST of the lowest of three depositional sequences identified in the Bromide (Carlucci et al. 

2014).  The overlying Mountain Lake Member (HST of Sequence 1; Sequence 2) is poorly 

exposed, but Fay et al. (1982b) provide a detailed description of exposures from an adjacent 

quarry that is now almost completely covered. Higly fossiliferous, greenish gray shales and thin 

packstones of the "lower Echinoderm Zone" are still exposed, though largely covered, along the 

northwest side of the roadcut, southwest of crossing of the gully, which separates the roadcuts 

into two sectors. These shales yield abundant plates of hybocrinids, rhombiferans and other  
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TEXT-FIGURE 12.—Outcrop photograph (stop 4) showing the position of “member 1” of the Viola 

Formation (to be formally named elsewhere) relative to the peritidal cycles of the Corbin Ranch Submember 

of the Bromide Formation. GPS: 34°34'11.11"N, 96°37'52.31"W. 

 

echinoderms as well as diverse brachiopods and bryozoans. An overlying bundle of sandstones 

and sandy limestones crops out along the same cut just SW of the gully and area of covered 

section. 

  The youngest strata assigned to the Bromide Formation, fully exposed NE of the gully, 

represent the Pooleville Member (HST of Sequence 3).  The lower Pooleville is for the most part 

a sparsely fossiliferous succession of wackestone and calcisiltite that is overlain by peritidal 

carbonates of the Corbin Ranch submember (Amsden, in Amsden and Sweet 1983) (Figure 12).  

The latter includes the rhynchonelliform brachiopod Ancistrorhynchia (Amsden, in Amsden and 

Sweet 1983), and rare sclerites of the trilobite Bathyurus (e.g., Ludvigsen 1978); the latter is 

indicative of the traditional Blackriveran stage of eastern North America.   The Pooleville is also 

noteworthy because bentonites at 4.1 and 11.3 m below the top of the Corbin Ranch Member 

have been correlated with the well-known Millbrig and Deicke K-bentonites (Rosenau et al. 

2012).  However, these bentonites have not yet been geochemically “fingerprinted”, and 

interpretation rests largely upon stratigraphic position. 
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 Viola Springs Formation.  The Viola Springs Formation begins with a thin (~ 0.8 m) 

package of mostly deep subtidal, graptolitic wackestone and shale that has a sequence-like 

architecture (sequence 4 of Carlucci et al. 2014).  It will be named formally elsewhere and is 

simply designated “member 1” herein (Figure 12).  At the base, the TST is recorded by a 

condensed interval of packstone and grainstone that includes rare sclerites of unnamed species of 

Cryptolithus (Amati 2014) and Flexicalymene (Amati 2004) that indicate a “Trentonian” age,  

and a cm-thick clay (Decker 1933) that may represent a bentonite.  The overlying HST 

comprises about five beds of wackestone and shale that yield an upper Sandbian graptolite fauna.  

Previous workers (e.g. Young et al. 2005; Leslie et al. 2008) have agreed that the base of the 

Viola Springs is the M4–M5 sequence boundary that has been correlated widely across eastern 

North America.  Member 1 likely represents the M5A of the Cincinnati region (Carlucci et al. 

2014).  

 Member 1 is truncated by an irregular unconformity surface that is succeeded by about 15 

m of cherty, laminated lime mudstone, wackestone and calcisiltite, with a sparse fauna of 

cryptolithine and isoteline trilobites, and graptolite fragments (Amati 2014, appendix 2).  A 

major lithofacies change to coarse, bryozoan-rich, bioclastic grain- and rudstone (Amati and 

Westrop 2006) occurs at about 18 m above the base of the Viola Springs, although the contact 

with the underlying cherty limestone is not exposed. This high-energy bioclastic facies 

presumably represents the TST of a depositional sequence that we suspect is correlative with 

sequence M6 of eastern North America.   

 About 40 m above the base of the Viola Springs, the succession shifts to deeper subtidal, 

trilobite-brachiopod bioclastic pack- and rudstone interlayered with wackestone (high diversity 

wackestone–rudstone facies of Amati and Westrop 2006).  

 

 

 
 

 

TEXT-FIGURE 13.—Stratigraphic column of “member 1” and inferred position of sequence boundaries, 

maximum flooding surfaces, ravinement surfaces, and Mohawkian depositional sequences (M4, M5, M5A). 
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Age and correlation of the HW99 section 

 Recent assessment of the conodont biostratigraphy of the HW 99 section (Young et al. 

2005) follows graphic correlation by Sweet (1983, 1984).  The Bromide and lower Viola Springs 

(including member 1) falls within the Phragmodus undatus Zone (Sandbian).  The bulk of the 

Viola Springs has been assigned to the Plectodina tenuis Zone, with only the uppermost few 

meters representing the Belodina confluens Zone (Young et al. 2005, fig. 3). Thus, the conodont 

biostratigraphy is consistent with the interpretation of the unconformable contact of the Bromide 

and Viola Springs as the base of the M5 depositional sequence.  However, the conodont faunas 

would also suggest that the entire Viola Springs at HW 99 lies within sequence M5, and that the 

carbon isotope excursion is correlative with the GICE (Bergström et al. 2010, fig. 4).  It also 

implies that the coarse bioclastic TST at about 18 m records a lower rank sequence (4th order?) 

within M5.  

 The trilobite and graptolites also support the conclusion that the base of the Viola Springs 

(member 1) is of late Sandbian age, and correlative with the base of M5.  However, in the upper 

half of the section, the graptolite and trilobite faunas indicate a significantly younger age than is 

suggested by the conodonts. The trilobites belong to the Bumastoides and Thaleops biofacies of 

Amati and Westrop (2006), and include a number of species (e.g., Amati and Westrop 2004; 

Amati 2014; Swisher et al. 2015) that are known to occur in the Kimmswick Limestone in the St. 

Louis, Missouri, area.  There the Kimmswick rests unconformably on strata, including the 

Guttenburg Limestone, that surely record the GICE (Metzger and Fike 2013), and the trilobite 

faunas are no older than M6, and may extend into correlatives of the C1 sequence (Swisher 

2015). Elements of the Kimmswick trilobite fauna enter the HW 99 succession in the coarse 

bioclastic grain- and rudstone facies at about 18 m above the base of the Viola Springs (Amati 

2014), and indicate that this is in fact the local expression of a TST at the base of sequence M6.  

Moreover, if the age of the Viola Springs suggested by the trilobites is correct, then there are 

obvious implications for the identity of the carbon isotope excursion present in the upper half of 

the section.  It cannot be the GICE, and may in fact the same excursion that Bergström et al. 

(2010) identified as the “Kope excursion” in the lower part of the Viola Springs at the I35 south 

section (Westrop et al. 2012).  A correlation chart illustrating the Upper Ordovician graptolite 

zones, conodont zones, and important event and chemostratigraphic marker horizons in the 

principal localities discussed in the text is shown in Table 2 below. 

 The differing perspectives on the age of the upper half of the Viola Springs at HW 99 

demand that either the conodont or the trilobite faunas have diachronous first appearances.  They 

can be reconciled only if the conodont index species have relatively late (stratigraphically young) 

first appearances relative to the trilobites or, alternatively, species of the Kimmswick trilobite 

fauna appear relatively earlier in Oklahoma.  This problem is still not fully resolved, but 

graptolite faunas seem to favor diachroneity of conodont species. 
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Table 2.—Correlation chart illustrating the Upper Ordovician graptolite zones, conodont zones, and 

important event and chemostratigraphic marker horizons discussed in the text. Key references used in 

constructing this chart are Finney (1986), Goldman et al (2007), Bergstrom et al. (2010) and Webby (2004). 

 

 

  Graptolites are unevenly distributed through the Viola Springs Formation, and the 

boundary between the Climacograptus bicornis and Diplacanthograptus caudatus zones is 

poorly constrained (Goldman et al. 2007). The lowermost 0.4 meters of the Viola Springs 

Formation (Member 1) contain Climacograptus bicornis, Dicranograptus semispinifer (= D. 

nicholsoni longibasalis Ruedemann), Normalograptus brevis, Corynoides calicularis, and 

Hustedograptus sp., a fauna that that belongs to the Upper Sandbian C. bicornis Zone. 

Interestingly, collections at 0.45 and 0.55 m contain graptolites that indicate the strata are 

uppermost Sandbian in age. The 0.45 m collection contains the graptolites Lasiograptus n.sp. A. 

and Rectograptus intermedius, species that also occur in the 75NY-2 drill core from eastern New 

York State (Roloson 2010) and outcrops from the Gaspé Peninsula, respectively (Riva, pers. 

com.). These taxa occur in an interval that postdates the LAD of C. bicornis, but just before the 

FAD of D. caudatus. A collection at 0.55 m contains Orthograptus quadrimucronatus, a 

graptolite generally considered to be restricted to Katian age strata. In some Chinese sections this 

species has been reported in upper Sandbian strata but generally (and in North America) its range 

is Katian.  Hence, the graptolite fauna in Member 1 of the Viola Springs Formation at Highway 

99 indicates that these beds belong to the uppermost Sandbian Stage. 
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 The following 20 meters of strata are devoid of graptolites but Finney’s (1986) report of 

Geniculograptus typicalis at a horizon 25 m above the base of the Viola Springs and 

Diplacanthograptus spiniferus at 35 m, together with other species of the eastern Laurentian D. 

spiniferus Zone at higher levels (Goldman et al. 2007), is consistent with the upper half of the 

section being no older than M6. Graptolites collected in the upper half of the Highway 99 section 

include: 

43 m – Diplacanthograptus caudatus, Corynoides americanus, Cryptograptus insectiformis 

44 m – Diplacanthograptus spiniferus 

45 m – C. americanus, Cryptograptus insectiformis 

51 m – G. typicalis, Orthoretiolites hami, D. caudatus, D. spiniferus 

65 m – Orthograptus quadrimucronatus 

Additionally, the collection at 43 m contains the Baltic chitinozoan Angochitina capillata, a 

species restricted to the Nabala through Pirgu regional stages in Estonia (Goldman et al. 2007). If 

its stratigraphic range in North America is consistent with its range in Baltoscandia, then the 

occurrence of A. capillata at this level implies a correlation with the uppermost D. spiniferus 

Zone. No graptolite species that would indicate this interval should be assigned to the younger 

Geniculograptus pygmaeus Zone have been found at the Highway 99 section. This age 

interpretation fits with the carbon isotope excursion at Highway 99, previously referred to as 

GICE actually correlating with the Kope Excursion of Bergström et al. (2010). 

 

DAY 3 

Stop 5: Sam Noble Oklahoma Museum of Natural History 

 The Sam Noble Museum is both a state natural history museum as well as an academic 

unit of the University of Oklahoma.  Established in 1899, the Museum moved to a new building 

on the university campus in 1999, and this move consolidated the collections under one roof.  It 

is now one of the largest university-based natural history museums in North America.  Three 

paleontological collections house invertebrates, plants and microfossils, and vertebrates, 

respectively. 

 Coincident with the move to the new building, the Invertebrate Paleontology Collection 

expanded significantly with the acquisition of macrofossils from the Amoco Petroleum Company 

following its merger with BP.  This material represents the results of decades of work by the 

Amoco paleontology and biostratigraphy research group.  It includes numerous field samples 

from measured sections at localities throughout North America, including frontier regions such 

as Alaska and the Canadian Arctic. The Amoco collection is largely undescribed and represents a 

significant research resource. 

 With the incorporation of the Amoco donation and extensive material from the Oklahoma 

Geological Survey (T.W. Amsden’s collections of Ordovician–Devonian brachiopods), the 

Invertebrate Paleontology Collection now comprises about one million specimens, including 

about 10,000 type and figured specimens.  Particular strengths include Cambrian and Ordovician 

trilobites and graptolites, Silurian and Devonian brachiopods, and Carboniferous brachiopods, 
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corals, and echinoderms.  Much of the collection can be searched via the web at 

http://samnoblemuseum.ou.edu/collections-and-research/invertebrate-paleontology/integrated-

invertebrate-paleontology. 

 The exhibits at the Museum include an ancient life gallery that spans the Archean to 

Pleistocene.  Highlights include two Ediacaran dioramas, and a diorama based on the Upper 

Ordovician (Sandbian) of Oklahoma, as well as a series of dinosaur exhibits that include 

Apatosaurus, Saurophaganax, Deinonychus, Tenontosaurus, and Pentaceratops. 

 

Stop 6: Sylvan Shale, Keel and Cochrane limestones, Ordovician-Silurian contact 

 The outcrop at stop 6 is located along HWY 77 on the west size of the I-35 interchange, 

across the road from Arbuckle Fried Pies. The base of the section is located to the south, where it 

exposes the uppermost Ordovician (Hirnantian) rocks in the Arbuckle Mountains, and its contact 

(Fig. 14) with the lowermost Silurian (Llandovery).  Progressively younger strata at this locality 

include the Sylvan Shale (Ordovician), Keel Formation (Ordovician), Cochrane Formation 

(Silurian), and Clarita Formation (Silurian). Additional exposed units to the north along HWY 77 

are the later Silurian and Devonian strata of the Upper Hunton Group including the Henryhouse 

Formation, Haragan Formation, and Woodford Formation. 

 Our focus at stop 6 is the Chimneyhill subgroup of the Hunton (Keel, Cochrane, and 

Clarita), and the underlying Sylvan Shale.  The Sylvan Shale lies conformably on the Welling 

Formation (stop 7) of the Viola Group, and forms a recessive interval between the weathering 

resistant carbonates above and below it.  It formed as a widespread sheet of anoxic, fine 

siliciclastic silt and clay that extends westward into north Texas, eastward into the Ouchita 

Mountains region, and northward into the Mississippi Valley region (Playford and Wicander 

2006).  The upper portion of the Sylvan (exposed at stop 6) is especially fissile and is lacking in 

carbonate fines, with the exception of a few marly interbeds and sandy dolomitic stringers.  

Pyrite clusters are common, and provide further evidence of widespread reducing conditions 

prior to the deposition of the Chimneyhill subgroup.  The Sylvan Shale is generally considered to 

be of upper Katian (Ashgill or Richmondian) age on the basis of biostratigraphy (Amsden 1975). 

Graptolites throughout the formation indicate an age no older than the Dicellograptus 

complanatus Zone, while chitinozoans also suggest an "Ashgill" age (Jenkins, 1970, 1971). 

Some authors (e.g., Ham 1969) have argued that the Sylvan/Chimneyhill contact is 

disconformable, but Playford and Wicander (2006) stated that there is little biostratigraphic 

evidence to support that assertion. 

 The oldest unit of the Chimneyhill subgroup is the Keel Formation, exposed at stop 6 

directly above the Sylvan Shale.  The Keel is a massive, fossiliferous oolitic packstone that 

contains both micrite matrix and spar cement, and may show silicified ooliths and flecks of 

glauconite in the matrix.  Brachiopods of the Keel Limestone are Hirnantian in age (Ham 1973), 

and those of the overlying Cochrane are early Silurian (Llandovery).  Much of the Llandovery is 

apparently missing at the contact, during which time there must have been regional erosion and 

truncation of the Keel (Amsden 1963; Ham 1973).  The Cochrane Limestone is the lowest unit of  

http://samnoblemuseum.ou.edu/collections-and-research/invertebrate-paleontology/integrated-invertebrate-paleontology
http://samnoblemuseum.ou.edu/collections-and-research/invertebrate-paleontology/integrated-invertebrate-paleontology
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TEXT-FIGURE 14.—Ordovician-Silurian contact and formations exposed at stop 6 (GPS: 34°26'44.55"N, 

97° 8'7.86"W). Brachiopods of the Keel Limestone are Hirnantian in age (Ham 1973), and those of the 

Cochrane are early Silurian (Llandoverian). 

 

 

the Silurian at stop 6, and is a thick-bedded, glauconitic limestone whose brachiopod fossils 

(Microcardinalia protoplesiana) reveal a late Llandovery (Aeronian to early Telychian) age the 

upper part that allow for correlation with the Silurian Blackgum Formation in eastern Oklahoma 

(Amsden, 1966; Ham 1973) and probably with the Sexton Creek Formation of Arkansas, 

Missouri and Illinois.  The overlying thin shale above the Cochrane (Fig. 14), termed Prices Fall 

Member, is possibly a remnant of a widespread shaly interval termed 76 Shale in Arkansas and 

Illinois; this interval is a feather edge of latest Llandovery to early Wenlock (Pterospathodus 

amorphognathoides Zone) Osgood Shale of Indiana-Kentucky and records a major Telychian 

transgression. The overlying Clarita grainstones are likewise a local representative of lower 

Wenlock (Sheinwoodian) transgressive limestones. 
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Stop 7: I-35N, Bromide Formation Reference Section 

 Late Whiterockian through Mohawkian (Fig. 3) deposition in the Arbuckle Mountains 

and Criner Hills regions of Oklahoma is recorded by the mixed carbonate-siliciclastic Bromide 

Formation, the youngest unit of the Simpson Group.  Bromide deposition took place during a 

period of relative stability of the Oklahoma Basin (see Carlucci et al. 2014, fig. 1), where a 

shallow, tropical, carbonate-dominated sea bordered the SOA.  To the north, the Oklahoma 

Basin was bordered by the Arbuckle platform (Longman 1982b), which was a desert region that 

likely supplied wind-blown sand deposited as sheets in the basins. As with the majority of 

Simpson Group formations, carbonate production in the Bromide was periodically interrupted by 

siliciclastic sediment supply from the north and east. 

 The Bromide Formation is subdivided into three members and one submember.  The 

lowest unit is the Pontotoc Member (Carlucci et al. 2014), a massive, thick-bedded or rippled 

unit of shoreface sandstone.  The next unit (Mountain Lake Member) is a succession of quartz 

sandstone, interbedded sandstone and illitic-chloritic shale, and shale and limestone (mostly 

pelmatozoan packstone and grainstone).  The basal shaly interval above the Pontotoc Member 

comprises the "Lower Echinoderm" Zone of Sprinkle (1982), which is widely noted for high 

diversity assemblages of echinoderms, including crinoids, (hybocrinids, camerates, Cleiocrinus), 

paracrinoids, rhombiferan cystoids; these echinoderms have been well documented (Sprinkle, 

1982). 

 The mixed carbonate-siliciclastic units are overlain by the Pooleville Member, a thick-

bedded to massive unit of carbonate mud-, wacke-, and packstone.  The basal Pooleville is 

marked by a thick-bedded echinodermal grainstone, overlain by a shale and packstone rich 

interval, the "upper Echinoderm Zone" of Sprinkle (1982). The upper Pooleville is set off as a 

lithologically distinct submember called the Corbin Ranch, which is a fenestral, commonly 

dolomitic limestone that forms peritidal cycles just below the contact with the Viola Springs 

Formation.  Figure 15 summarizes the range of facies and inferred depositional environments in 

all units of the Bromide Formation. 

 

Biostratigraphy and Age of the Bromide 

 Stop 7 is the newly established standard reference section (Carlucci et al. 2014) for 

correlation and discussion of depositional sequences in the Bromide Formation.  This outcrop is 

well preserved, nearly complete (except for the Pontotoc Member), and has previously been 

well-studied biostratigraphically (e.g., Bauer 1994).  Bauer (1994) suggested that the Bromide is 

Sandbian age (Fig. 3, late Whiterockian to Mohawkian of classical North American 

nomenclature) by comparison of the conodont fauna with the graphic correlation standards of 

Sweet (1984) and Bergström (1983). In the lower Mountain Lake, Cahabagnathus sweeti is 

indicative of the late Whiterockian, and is replaced by the Mohawkian conodonts Baltoniodus 

gerdae and Eoplacognathus elongatus in the Mountain Lake.  Bauer (1994) suggested that the 

conodont fauna of the intertidal Corbin Ranch submember includes forms that range from 

Blackriveran (Whiterockian) to Mohawkian, and could not constrain the age of the unit.  He 
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(1994, table 2) also noted that C. sweeti showed a strong proclivity for shallower water 

environments, while B. gerdae apparently favored deeper water environments. Such facies 

control on distribution has important implications for conodont-based correlation of the sections. 

Although B. gerdae occurs through the entire section down-ramp at RC in the Criner Hills, it is 

restricted to just four meters of the deepest portion of the upper Mountain Lake up-ramp at I-35N 

(Bauer 1994, table 1). The narrower stratigraphic distribution up-ramp is exactly what would be 

predicted from a hypothesis of facies control, so that differences in the first appearance of B. 

gerdae cannot be used as evidence that the deeper facies are stratigraphically younger down-

ramp.  

 Independent estimates of the age of the upper Bromide strata in the Criner Hills (stop 12) 

relative to I-35N are inconclusive. Decker (1935, 1941) and Finney (1986) showed that 

graptolites from the upper Bromide (Amplexograptus maxwelli, Dicellograptus flexuosus) are 

diagnostic of the British D. multidens Zone. The D. multidens zone spans the Deicke, Millbrig, 

and Kinnekulle bentonites, and consequently, its duration is too long to provide a 

biostratigraphic test of the absence of Pooleville Member down-ramp (see stops 11 and 12 for 

more explantion). Interestingly, both Bauer (1994) and Rosenau et al. (2012) found the upper 

Sandbian condont, Phragmodus undatus, in the Pooleville at HWY 99 (far up-ramp, stop 4), but 

it has not been recorded from the down-ramp "Poolville" of the Criner Hills (stop 12). Although 

this could be yet another example of facies control, it might instead provide evidence that the 

“Pooleville” within the SOA has been miscorrelated with the true Pooleville, which is missing 

down-ramp.  

 The composite section comprises the north and south sides of I-35, and the median, 

which together expose a nearly complete succession of Bromide units. The completeness and 

preservation of the I-35N section allows it to serve as a model to characterize cyclicity at meter 

and decameter scales (Fig. 15) and correlate with other sections up- and down-ramp (Fig. 17). 

 

Sequence Stratigraphy and Cyclicity 

 Meter scale cycles in the Bromide Formation (Figs. 16, 18) consist of alternating small-

scale or “micro”-TSTs and HSTs (meter-scale analogues of systems tracts) that form packages of 

condensed and more rapidly accumulated deposits (cf. Brett and Algeo 2001; Brett et al. 2008). 

In the Mountain Lake Member, micro-TSTs are amalgamated, nodular to tabular beds of poorly 

sorted bryozoan-echinoderm grainstone.  Bases of micro-TSTs are marked by sharp facies 

offsets and scouring (merged transgressive/high-frequency sequence boundary surfaces), 

whereas flooding surfaces at their tops commonly include authigenic mineral crusts (iron oxide 

and pyrite) or a heavily bioturbated firmground (e.g., McLaughlin et al. 2008). HSTs are mostly 

shale, interbedded with thin nodular bryozoan and echinoderm packstone and grainstone. 

 

 

TEXT-FIGURE 15.—Facies descriptions, fossil content, and depositional interpretation of Bromide 

Formation lithologies (modified from Carlucci et al. 2014).   
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TEXT-FIGURE 16.—Example of 5th order 

meter scale cycles in the Mountain Lake 

Member of the Bromide Formation. “a” and 

“b” refer to meter-scale analogues of systems 

tracts (modified from Carlucci et al. 2014).   

 

 

 

 In the Pooleville Member, micro-

TSTs are indurated wackestone and 

packstone and are shale-poor, show 

evidence of condensation upwards, poor 

sorting, pyritization of bioclasts, and 

flooding surfaces that are heavily stained 

with iron-oxide and pyrititic or phosphatic 

mineral crusts. These mineralized surfaces 

also represent the highest degree of 

sediment starvation in the micro-sequence 

(maximum sediment starvation surfaces of 

Baum and Vail 1988; Brett et al. 2004) 

and are overlain by thinner, late TST shell 

hashes and/or micro-HSTs of 

aggradational to progradational, 

interbedded shale and limestone rhythms. 

Micro-HSTs are thinly and planar bedded 

near their bases, and gradually become 

more nodular as they decrease in 

siliciclastic content.  Low-rank 

transgressive surfaces/high-frequency 

sequence boundaries sharply overlie the 

micro-HSTs, and are commonly irregular 

erosive disconformities. 

 At a larger scale of 

accommodation space dynamics, Carlucci 

et al. (2014) documented three distinct, 3rd 

order depositional sequences that record the transition from siliciclastic to carbonate dominance 

during Bromide deposition.  Portions of sequence 1 and the entirety of sequences 2 and 3 are 

exposed at stop 7.  Sequence 1 is likely the last major depositional sequence of the Whiterockian 

(Dariwillian), and consists of massive, cross-bedded, and/or rippled sandstones (Pontotoc 

Member) that grade abruptly upward into sandy limestones, in what Carlucci et al. (2014) 

considered to be a transition from lowstand (LST) to early transgressive (TST) conditions.   
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TEXT-FIGURE 17.—Simplified summary of facies associations and depositional sequence architecture of the 

Bromide Formation (modified from Carlucci et al. 2014: Carlucci and Westrop 2015). a, correlation of 

stratigraphic columns based on sequence stratigraphic surfaces. b, Arbuckle Mountains map showing line of 

cross section and localities. 
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TEXT-FIGURE 18.—Outcrop example (stop 7) of meter scale cycles in the Mountain Lake Member of the 

Bromide Formation.  See Figure 16 for interpretation.  GPS: 34°26'9.21"N; 97° 7'46.88"W. 

 

 

Coarse, sandy bioclastic packstones and grainstones with condensation features represent TST 

deposition, and these are overlain at a maximum flooding surface by HST units of interbedded 

green fossiliferous  shales ("Lower Echinoderm Zone"), rudstones, and grainstones.  The 

sequence boundary is a sharp contact between the interbedded green shale and marly packstone, 

and a rippled and crossbedded, sandy crinoidal grainstone. 

 Complete description of the depositional architecture of sequences 2 and 3 is beyond the 

scope of this field guide; however, Figure 17 shows the facies associations contained within 

depositional sequences 2 and 3.  These facies associations and the corresponding bounding 

surfaces are well exposed at I-35N, and participants can walk south along the highway and study 

the sequences.  In brief, sequence 2 is composed of a basal sandy crinoidal grainstone and 

trilobite packstone succession interpreted as TST deposits.  These are overlain by thick, marly 

limestone-shale rhythmites (HST) whose component meter scale cycles shallow upwards.  Rapid 

facies change to a rippled calcisiltite and grainstone unit likely represents an interval of forced 
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regression, just prior to a major sequence boundary below the uppermost green shale of the I-35 

outcrop.  Sequence 3 deposition starts with an input of siliciclastic fines (“the big green shale” or 

Upper Echinoderm Zone) that likely formed as the coastline was exposed during sea level 

lowstand.  These are overlain by a fossiliferous unit of rubbly, phosphatic packstones and 

grainstones with hematite-pyrite mineral crusts.  This facies is interpreted as a carbonate shoal 

deposit that formed during a major marine transgression, and was mapped across the Arbuckles 

by Carlucci et al. 2014 (Fig. 17).  Above the maximum flooding surface of the sequence 3 TST, 

predominantly carbonate mud- and wackestone deposition show a gradual shallowing upward 

trend to the fenestral beds of the Corbin Ranch Submember.  The sequence boundary with the 

Viola Springs Formation (Sandbian-Katian boundary) directly overlies the fenestral beds at this 

locality. 

 Note that the thin sequence at the base of the Viola Springs Formation (“member 1” of 

the stop 4 discussion) is not present at the Bromide/Viola contact at stop 7, likely due to 

erosional truncation at the Bromide/Viola Springs unconformity. 

 

Stop 8: I-35S, Viola Springs and Welling Formation 

 The I-35 South section comprises a pair of road cuts on the south flank of the Arbuckle 

Mountains that expose the uppermost Bromide, much of the Viola Springs, and the Welling 

formations.  Amati (2014) recently published locality information, including a lithologic log of 

this section.  The Bromide is represented by only a few meters of subtidal facies that includes 

massive wackestones with brachiopod and gastropod shell beds that likely record storm-

influenced deposition. Cross sections through receptaculitids are commonly encountered in the 

uppermost beds.  The peritidal facies of the Corbin Ranch submember, reduced to only a thin 

remnant at the I35N section relative to the type area near Fittstown (stop 4), is entirely missing at 

I-35S. 

 The Viola Springs Formation is exposed in two segments separated by a covered interval 

of about 75 m, although it is more complete on the north-bound lane. The base of the formation 

is a major unconformity marked by an irregular mineralized, rusty weathering surface that cuts 

out much of HST of Sequence 3 (Corbin Ranch, upper Pooleville Member).  The discussion of 

the stratigraphy and facies follows Amati’s (2014) description of the section. The basal two 

meters of the formation is a white-weathering ostracode-rich wackestone-packstone with 

interbedded black graptolite-bearing calcareous shale, and capped by another planar, mineralized 

surface.  The succeeding 25 m is mostly thin-bedded, plane-laminated, cherty, lime mudstone 

with thin, dark gray, marly interlayers; bioturbation is variable, but generally low.  Bioturbation 

increases higher in the section, and the lithology switches to burrow-homogenized wackestone to 

packstone with marly layers at about 55 m; debris of cryptolithine and isoteline trilobites, as well 

as graptolites can be seen commonly in the marly layers, although specimens are not easily 

collected.   

 Above the covered interval, the upper part of the section includes thicker-beddded 

limestone that forms meter-scale cycles with intervals of dark, strongly bioturbated lime 
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mudstone alternating with crinoidal grainstone.  The section is capped by about 10 m of massive 

crinoidal grainstone of the Welling Formation.  According to Amati (2014), the contact between 

the Viola Springs and Welling is gradational over about a meter of section. 

 

Biostratigraphy 

 Graptolites.  Finney (1986, fig. 7) published a range chart (his section U) for graptolites.  

Most of his collections were made from the lower segment of the section.  These show that the 

lower 20 m is characterized by an assemblage that includes Diplacanthograptus spiniferus, 

Orthoretiolites hami and Geniculograptus typicalis, taxa that indicate these beds belong to the D. 

spiniferus Zone. However, recent sampling by Goldman (unpublished) of the basal meter of the 

Viola Springs at this locality yields an assemblage with, among others, Diplacanthograptus 

caudatus, Neurograptus margaritatus, Normalograptus brevis, and Dicranograptus hians, which 

he interprets as earliest Katian (D. caudatus Zone).  The presence of D. caudatus and 

Dicranograptus hians indicates a correlation with the Australasian Stage Ea1, which is pre- D. 

spiniferus Zone. There is one juvenile specimen in the 3.0 – 6.0 cm collection that resembles D. 

spiniferus, but the identification is uncertain. Hence the lowermost Viola Springs Formation at 

the I-35 section is similar in age to its base at the Mountain Lake section, which also yields D. 

caudatus Zone graptolites (Finney, 1986).  

 The base of the Geniculograptus pygmaeus Zone is marked by the appearance of the 

eponymous species at 32 m above the base of the Viola Springs (Finney, 1986); this boundary 

correlates into sequence C1 of the Cincinnati region (Brett et al., 2004).  Finney (1986, fig. 7) 

does not record any other species entering the succession above G. pygmaeus, although a few 

species extend from the lower to the upper segment of the section (e.g., Orthograptus 

quadrimucronatus). 

 Conodonts.  Conodont data are limited for I35 South, but Bergström et al. (2010) recently 

showed the distribution of zones, albeit without any species range data.  They placed the base of 

the Viola Springs within the Belodina confluens Zone, confirming the conclusions of Carlucci et 

al. (2014) that there is significant unconformity with the underlying Bromide Formation. The 

upper part of the formation is assigned to the Amorphognathus superbus Zone; the Welling 

Formation apparently lies in the overlying A. ordovicicus Zone. 

 On the basis of the conodont biostratigraphy, Bergström et al. (2010) concluded that a 

positive isotope excursion at the base of the Viola Springs at I-35S represented the “Kope 

excursion” of the Cincinnati region.  They interpreted the excursion at the HW 99 section as the 

GICE, with the implication that this section is entirely older than the I-35S section (Berström et 

al., 2010, fig. 4).  However, the trilobite biostratigraphy of HW 99 indicates that the interval 

containing the so-called “GICE” is younger than previously thought, and the positive excursion 

may well be the same excursion identified as the “Kope” at I-35S (Westrop et al., 2012).  The 

graptolite data do not conflict with this hypothesis, which implies an overlap of about 25 m 

between the sections.   

 



Stratigraphy, 12 (2) 
 

186 
 

DAY 4 

Stop 9:  Oil Creek Formation (if time allows) 

 This locality is an exposure through the 2nd oldest unit of the Simpson Group, the Oil 

Creek Formation.  The Oil Creek is well known in Oklahoma for its economic impact and 

industrial importance.  The basal unit of the Oil Creek is a thick (~ 350 ft, Ham 1973) sandstone 

that is comprised of well-sorted and rounded quartz sand.  This sand is over 99% pure silica, and 

companies such as the Pennsylvania Glass Sand Corporation (now known as U.S. Silica Corp) 

have been selling it for use in glass-making and as silica flour for over 90 years. Quartz sand in 

the lower Oil Creek is unique because there are few pressure solution contacts, quartz 

overgrowths, and only loose illite cement at grain boundaries (Ham 1973).  For these reasons, the 

sand is easily disarticulated in solution and processed into glass.  The cleanly washed and high 

porosity sands of the Oil Creek are also a prolific oil reservoir in southern Oklahoma, and have 

been extensively mapped into the subsurface. 

 The exposure of the Oil Creek at stop 9 is from the upper unit, which is primarily 

composed of sandy packstone, grainstone, and shale.  The transition from the lower unit is 

gradational, with bioclasts gradually becoming a more common framework component.  The 

sandy limestone facies as exposed here is heavily bioturbated and extremely fossiliferous, and 

contains a number of hardgrounds encrusted by bryozoan and echinoderm holdfasts, which are 

indicative of slowing rates of deposition relative to the lower sandstone unit.  Limestones are 

exceptionally fossiliferous and contain a diverse fauna of brachiopods, bryozoans, gastropods, 

nautiloids, and trilobites; cystoid plates are also common on some bedding planes. The lowest 

beds of the limestone unit contain stromatolitic boundstone and sand filled desiccation cracks 

(Brown 2003), and may record undocumented bounding surfaces that better document the nature 

of the transition.  Like the Bromide Formation (see stop 7) and other units in the Simpson Group, 

deposition in the Oil Creek evolves from primarily siliciclastic to mostly carbonate.  Ham (1973) 

stated that ascertaining the depositional environment of the Oil Creek was problematic because 

of the lack of diagnostic sedimentary structures.  One possibility is that the lower unit represents 

shoreface deposits with input from a regional desert on the Arbuckle Platform (Longman 1982), 

with limestone clasts becoming incorporated during a large-scale transgression.  Carlucci et al. 

(2014) noted that this type of model might be problematic for some units of the Simpson Group, 

because many of the sands thicken toward the SOA, as would be expected during lowstand 

normal regression.  The Oil Creek sands are thick and extensive mostly in eastern Oklahoma, 

though they do form a wedge toward the SOA (Schramm 1964, fig. 8), which might be consist 

with lowstand progradation.  In this scenario, it seems likely that wedge development during 

lowstand conditions was followed by a transgression at some point that allowed for the 

preservation of open marine fossils. 

 

Stop 10: Structural Features in the Fort Sill Limestone 

 The Fort Sill Limestone (Fig. 19) is the lowest unit in the Arbuckle Group (Cambrian; 

Sunwaptan), primarily distinguished from the underlying Honey Creek Limestone based on the  
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TEXT-FIGURE 19.—Folding in the Fort Sill Limestone, stop 10 (GPS: 34°24'29.76"N, 97° 8'20.85"W). 

 

prevalence of lime mud deposition in the Arbuckle Group (Ragland and Donovan 1991), and the 

loss of glauconite and siliciclastic sand.  Therefore, the early Arbuckle Group represents a shift 

in depositional style, where the carbonate platform was able to retain most of the mud that its 

carbonate factory produced.  Similar to other carbonate deposits of the Arbuckle Group, the Fort 

Sill was deposited in a shallow, low gradient epeiric sea.  During the Cambrian and into the 

Early Ordovician, margins were passive with high rates of post-rift subsidence, and there was 

little relief in the lowland areas of Laurentia (Ragland and Donovan 1991).  This unique setting 

allowed for accumulation of the incredibly thick deposits of tropical carbonates that characterize 

the Arbuckle Group. 

 The Fort Sill Limestone can be subdivided into three informal lithologic groups: a lower 

unit of thin bedded stromatolitic mudstones, middle unit of dolomitic siltstone-lime mudstone 

rhythmites, and an upper unit of massive algal boundstones (Ragland and Donovan 1991).  The 

upper two lithologies are expressed at stop 10, but this locality is much better known for its 

structural features. 
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 Along the north and south sides of I-35, the Fort Sill Limestone at stop 10 contains a 

series of fold sets that are offset by thrust faults.  The fold sets take a variety of shapes, most 

commonly as box or polyclinal (sub-parallel hinge lines but non-parallel axial surfaces) folds 

(Tapp 1991).  The folds at stop 10 all show a flexural-slip style of folding, where volume 

accommodation is preserved by layer-parallel slip between layers, rather than layer parallel flow 

(“flexural flow”).  The folds at stop 10 show vergence to the north, and are generally considered 

to be evidence of compressional forces causing the Arbuckle uplift (Brown 1984: Tapp 1991) 

rather than strike-slip deformation (Wickham and Denison 1978).  The structural features at the 

outcrop have been interpreted as part of a flower structure associated with the Chapman Ranch 

Fault (exposed near Turner Falls), part of the larger compressional forces of the Arbuckle Uplift 

(Brown et al. 1985), or as expression of volume accommodation in a larger-scale flexural-slip 

fold (Tapp 1991). 

 

Stop 11: Mountain Lake and Daube Ranch (DRa), Tulip Creek, Bromide, and Viola 

Springs Formation 

 

 Ulrich (1911) first used the term “Bromide” for a unit that lay unconformably below the 

“Viola Limestone”, but he did not propose any type locality or section. Edson (1927) proposed 

that the type locality of the Bromide be placed at the McLish Ranch, in the town of Bromide, 

Coal County, Oklahoma. The type sections of the Mountain Lake and Pooleville members of the 

Bromide as proposed by Cooper (1956) were placed at his Johnston Ranch locality, which is now 

owned by Sam Daube (referred to as DRa by Carlucci et al. 2014). Cooper defined the Mountain 

Lake to include a basal fine-grained quartz arenite (now called the Pontotoc Member), an 

overlying interbedded illitic-chloritic shale and sandstone, and an uppermost limestone and shale 

sequence at the top (Fay et al. 1982b). Cooper confined the Pooleville to the various limestones 

(occasionally interbedded with calcareous shales and marls) above the Mountain Lake, in 

particular near the SOA axis.  Stop 11 at the DRa location is the type section of the Mountain 

Lake and Pooleville Members. 

 The section at stop 11 begins in the Tulip Creek Formation (Fig. 3) of the Simpson 

Group, exposed down-section from the Upper Humble Lake (a reservoir), with progressively 

younger strata towards the dam.  Thick packages of green shale interbedded with massive 

limestones near the base of the section record the upper portion of the Tulip Creek, below its 

contact with the Pontotoc Member of the Bromide.  Lower parts of the section may be 

overgrown during the summer, so visibility of the Pontotoc and lower Mountain Lake Members 

might be limited. 

 In the middle Mountain Lake at DRa, there is an obvious expansion of the thickness of 

sequence 2 (Fig.17), in both the illitic-chloritic green shale, and shale-limestone rhythmite 

associations.  A particularly thick, trench-forming shale interval is prominent at DRa (not shown 

on Fig. 17), and is interpreted as  the lower green shale (lower Echinoderm Zone of Sprinkle 

1982) of the Bromide Formation, which correlates up-ramp into the lower Mountain Lake   
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(Carlucci et al. 2014), rather than the Pooleville as done previously.  This correlation is not 

intuitive at first, because there are lower shales at DRa that are poorly exposed (Fay et al. 

1982b), but they are likely part of the lower sequence 1, which is dominated by grainstone and 

shales at all the Bromide sections. 

 Longman (1982) stated that the putative basinal deposits of the ‘‘lower Pooleville’’ 

within the SOA (e.g., at sections DRa, RC, stops 11 and 12) and those of the upper Mountain 

Lake along the hingeline (e.g., I-35 N, stop 7) shared the same characteristic bedding (compare 

Figs. 18 and 20). Evidence discussed by Carlucci et al. 2014 suggests that they are similar 

because the supposed "lower Pooleville" strata of DRa and RC are, in fact, correlative with the 

middle to upper Mountain Lake elsewhere. This hypothesis demands that the down-ramp 

expansion of the Bromide thickness (sequence 2, Fig. 17) applies only to the siliciclastic-rich 

Mountain Lake Member, whereas the predominantly carbonate Pooleville Member (sequence 3) 

is largely missing at these sections owing to erosional truncation.  Evidence for down-ramp 

erosion of the Pooleville Member is shown on this field trip at stops 4, 7, 8, 10, and 11. There is 

an obvious truncation of the facies in our transect (partially shown here in Fig. 17), at the 

Bromide/Viola unconformity and down into sequence 3.  “Member 1” of the Viola is removed 

from the basin between stop 4 and 7, the Corbin Ranch is removed between 7 and 8, and then the 

Pooleville is progressively removed into the aulacogen in the Criner Hills, from stops 8 to 10, 

and 11. The true Pooleville Member at DRa is only preserved on the other side of the Upper 

Humble Lake, and this correlation is further evidenced by the widespread, mappable grainstone 

that is always present at the base of sequence 3 (exposed at DRa along the ground in the wooded 

area by the dam).  Indeed, this condensed grainstone unit is so consistently cut out from the basin 

that a thin wedge of it is preserved at the TQ locality (see Carlucci et al. 2014), just below the 

Bromide-Viola unconformity.  Additional paleontological evidence includes closely comparable 

strophomenid brachiopod beds, horizons with straight cephalopods, and identical species of 

trilobites in the rhythmite packages in the I-35 N, DRa and RC sections (Carlucci and Westrop 

2014). 

 Karim and Westrop (2002) described the taphonomy of the well-known ‘Homotelus’ 

beds (Vogdesia) from the TQ locality in the Criner Hills. These same beds, previously referred to 

as belonging to the Pooleville Member in the Criner Hills, are exposed at stop 11 (Fig. 20) in a 

trench-forming limestone-shale rhythmite that overlies the green shale unit, and which clearly 

lies low within the Mountain Lake.  These assemblages of articulated exoskeletons likely 

recorded behavioral aggregations that were preserved beneath storm-influenced ‘mud dumps’ 

(Karim and Westrop 2002; Brett et al. 2012).  These obrution beds occur most commonly in the 

early HST of sequence 2 across the Bromide Formation. When siliciclastics are no longer 

sequestered near the coastline during early HST, rapid deposition of mud layers in mixed 

carbonate– siliciclastic systems leads to exceptional preservation. In the rhythmite-dominated 

HST deposits, sedimentary structures in the limestone beds include burrow-mottled fabrics, 

Chondrites, disrupted laminae, vertical burrows and strophomenid brachiopods and trilobites 

(including articulated Vogdesia, Thaleops, Calyptaulax, Remopleurides) that formed as obrution  
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TEXT-FIGURE 20.--Outcrop photograph from the DRa locality, showing limestone-shale rhythmites in the 

unit that produces the ‘Homotelus’ (Vogdesia) beds, interpreted as a behavioral aggregation smothered 

during a mud-dump event.  GPS: 34°21'56.66"N, 97°17'7.24"W. 

 

horizons below storm wave base (Karim and Westrop 2002). Trilobites in the sequence 2 

obrution horizons lack epibionts as noted by Karim and Westrop (2002), whereas disarticulated 

specimens in shell pavements elsewhere are usually encrusted by various bryozoans and 

Cornulites tubes. This suggests the obrution-derived HST deposits were not exposed at the 

surface for long periods of time, and were probably smothered in place by mud blanketing events 

(Brett et al. 2012). 

 

Stop 12: Rock Crossing, Criner Hills Region, Bromide Formation 

 

 In the Criner Hills of southern Oklahoma, cuts along Hickory Creek (stop 12) are well-

known for producing important trilobite fossils, including the holotypes of Lonchodomas 

mcgeheei (Decker 1931; Sutherland and Amsden 1953) and Probolichas kristiae (Carlucci et al. 

2012).  Rock Crossing has a long history of study (e.g., Decker 1931; Decker and Merrit 1931; 

Sutherland and Amsden 1959; Longman 1982a, b; Fay et al. 1982; Carlucci et al. 2014), and 
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plays a pivotal role in any interpretation of Simpson Group strata because it lies southward of the 

inferred SOA basin axis.   

 East of D3265 Road, there is an exposure of rock that forms the creek bed around a 

meander of the Hickory Creek.  The strata are assigned to the lower Bromide Formation 

(Mountain Lake) and correspond to sequence 1 of Carlucci et al. (2014).  There is a hogback 

along the creek bank, developed in the Pontotoc Sandstone downstream of a waterfall that 

exposes the overlying sequence of packstone/grainstone, green shales, and bryozoan-rich beds 

(sequence 1 HST, sequence 2 TST of Carlucci et al. 2014).  This succession is similar to that of 

the reference section at I-35N.  Above these units at the top of the waterfall is the same 

limestone-shale rhythmite package (‘Homotelus beds’) that is exposed at stop 11.  Trilobites such 

as Vogdesia are somewhat more difficult to find at this locality, but the unit is rich in large, 

articulated straight cephalopods, brachiopods, and other trilobites.  Note how much thinner the 

interval between the basal sandstones and Homotelus beds is at this locality compared to stop 11.  

 Up-section towards the bridge, additional rhythmite packages are exposed, including the 

thin bedded, Lonchodomas-rich (Fig. 21) facies that is finely internally laminated and clearly 

formed below storm wave base (see Fig. 15).  Facies form a shallowing succession towards the 

bridge, becoming more nodular and fossiliferous, before abruptly ending without any evidence of 

“normal” Pooleville deposition below the Viola contact.  Carlucci et al. (2014) took this is as 

additional evidence for southward truncation of the M4/M5 sequence boundary, which is 

somewhat counterintuitive as the magnitude of the truncation appears to increase into the SOA 

basin.  However, the pattern is extremely consistent from stops 4-7-8-10-11.  First, “member 1” 

of the Viola is removed, then the Corbin Ranch, then part of the Pooleville, and then all of the 

Pooleville in the Criner Hills.  Down-ramp facies change does not account for this pattern, 

because the same facies and stacking patterns typical of the Mountain Lake are consistently 

developed across the sections, with those at the top missing progressively southward, at the 

unconformity.  The Viola Springs was deposited at the onset of a major tectonic phase of the 

Taconic Orogeny (Pope and Read 1997), and it is possible that far-field tectonics produced an 

inversion of topography of the SOA after the deposition of the Corbin Ranch submember, when 

shallowing was apparently still to the north, and prior to the start of Viola Springs deposition. 

This scenario is similar to the one proposed by Finney (1986, fig. 19) to explain an apparent 

earlier onset of Viola Springs deposition at the HWY 99 section, and we suggest that the uplifted 

southern region may have been beveled during a prolonged period of sea-level lowstand 

associated with the M4–M5 sequence boundary, which is a major break elsewhere in eastern 

Laurentia (e.g., Holland and Patzkowsky 1996).  An alternative model for the removal of an 

older carbonate unit in a down-ramp direction is rapid subsidence of the Criner Hills region in 

association with pre-Viola Springs tectonics. Under this scenario, abrupt down warping of the 

strata into a corrosive environment below the pycnocline could possibly result in dissolution and 

erosion from internal waves and deep anoxic currents (see Pomar et al. 2012; Baird and Brett 

1986). 
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TEXT-FIGURE 21.—Lonchodomas mcgheei (Decker 1931), a common fossil at stop 12 (Rock Crossing) 

approximately 15 meters below the Bromide/Viola contact. a, complete individual (OU 12531), x 4, dorsal 

view. b, topotype complete individual (OU 3448), x 4.2, dorsal view. c, damaged individual (OU 12533), x 8, 

dorsal view. d, e, cranidium (OU 12532), d, lateral view, x7 e, dorsal view, x6.7. 

 

 The facies spectrum (Fig. 15) across the Bromide Formation suggests a more continuous 

and less dramatic down-ramp change in facies then expected.  One implication is that localities 

such as Rock Crossing were likely deposited on a southern ramp that shallowed southward 

towards the Texas Arch.  Intuitively, this makes sense because the succession in the lower 

Bromide on the northern ramp towards the SOA (I-35N, stop 7) is similar to the lower Bromide 

at Rock Crossing. 
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TEXT-FIGURE 22.—Depositional model of sequences 1-3 in the Bromide Formation. FWWB= Fair weather 

wave base, SWB = Storm wave base (modified from Carlucci et al. 2014). 

 

 

 

Rock Crossing was pivotal in developing a depositional model of the Bromide Formation 

through three third-order depositional sequences (Fig. 22).  The model records the gradual 

transition from a siliciclastic dominated ramp (sequence 1), to a mixed siliciclastic-carbonate 

ramp (sequence 2), to a warm-water neritic carbonate ramp (sequence 3).  The ramp profile in 

sequence 3 is preserved in most of Oklahoma, but not on the southern ramp of the SOA, and only 

partially in the center of the aulacogen. 
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