7,122 research outputs found

    The Theory of the Interleaving Distance on Multidimensional Persistence Modules

    Full text link
    In 2009, Chazal et al. introduced ϵ\epsilon-interleavings of persistence modules. ϵ\epsilon-interleavings induce a pseudometric dId_I on (isomorphism classes of) persistence modules, the interleaving distance. The definitions of ϵ\epsilon-interleavings and dId_I generalize readily to multidimensional persistence modules. In this paper, we develop the theory of multidimensional interleavings, with a view towards applications to topological data analysis. We present four main results. First, we show that on 1-D persistence modules, dId_I is equal to the bottleneck distance dBd_B. This result, which first appeared in an earlier preprint of this paper, has since appeared in several other places, and is now known as the isometry theorem. Second, we present a characterization of the ϵ\epsilon-interleaving relation on multidimensional persistence modules. This expresses transparently the sense in which two ϵ\epsilon-interleaved modules are algebraically similar. Third, using this characterization, we show that when we define our persistence modules over a prime field, dId_I satisfies a universality property. This universality result is the central result of the paper. It says that dId_I satisfies a stability property generalizing one which dBd_B is known to satisfy, and that in addition, if dd is any other pseudometric on multidimensional persistence modules satisfying the same stability property, then d≤dId\leq d_I. We also show that a variant of this universality result holds for dBd_B, over arbitrary fields. Finally, we show that dId_I restricts to a metric on isomorphism classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in Foundations of Computational Mathematics. 36 page

    Sound radiation and sound insulation performances of maritime bulkheads

    Get PDF
    The research of materials matching low weight and high resistance has always been a key factor in the shipbuilding industry to increase performances and loading capacity. Nowadays, other issues add up to economical convenience, and building quiet ships is important not only for passengers and cabin crew, but also to make harbor areas more comfortable and to respect the aquatic environment. In this context, using sandwich or composite materials must be carefully evaluated and the sound insulation performances must be considered throughout all stages of the design process. This work presents some evaluations about the sound insulation performances of a ribbed fiberglass bulkhead and of a balsa-core sandwich bulkhead. In particular, the bending stiffness and the sound transmission loss obtained by sound transmission suites and mobility measurements are provided. From such measurements it has also been possible to determine the radiation efficiency of the structures, whose optimization is particularly important when a reduction of the noise pollution is required
    • …
    corecore