8,193 research outputs found

    Breakdown of adiabatic invariance in spherical tokamaks

    Get PDF
    Thermal ions in spherical tokamaks have two adiabatic invariants: the magnetic moment and the longitudinal invariant. For hot ions, variations in magnetic-field strength over a gyro period can become sufficiently large to cause breakdown of the adiabatic invariance. The magnetic moment is more sensitive to perturbations than the longitudinal invariant and there exists an intermediate regime, super-adiabaticity, where the longitudinal invariant remains adiabatic, but the magnetic moment does not. The motion of super-adiabatic ions remains integrable and confinement is thus preserved. However, above a threshold energy, the longitudinal invariant becomes non-adiabatic too, and confinement is lost as the motion becomes chaotic. We predict beam ions in present-day spherical tokamaks to be super-adiabatic but fusion alphas in proposed burning-plasma spherical tokamaks to be non-adiabatic.Comment: 6 pages, 8 figure

    On the Reification of Global Constraints

    Get PDF
    We introduce a simple idea for deriving reified global constraints in a systematic way. It is based on the observation that most global constraints can be reformulated as a conjunction of pure functional dependency constraints together with a constraint that can be easily reified. We first show how the core constraints of the Global Constraint Catalogue can be reified and we then identify several reification categories that apply to at least 82% of the constraints in the Global Constraint Catalogue

    Circuit Based Optimization of Radiation Characteristics of Single and Multi-Port Antennas

    Get PDF
    A method for analyzing and optimizing multiport antennas is presented and exemplified. The method was first presented in [1]-[3] and uses data from full wave electromagnetic field (EM) solvers in combination with circuit simulations for efficient calculations of radiation properties of multi-port antennas. The main advantage of the proposed method is that only a few full-wave simulations, which usually are time consuming, are needed when e.g. optimizing the matching circuits for a multi-port antenna. Since embedded element patterns are used, all relevant antenna parameters such as radiation efficiency, diversity gain, available MIMO capacity etc. can efficiently be computed for any port excitation and loading configuration. The methodology has been implemented in software called MPA (Multi-Port Antenna evaluator) which imports port response matrices and embedded element patterns from commercial full-wave codes and post processes the data making it possible to e.g. optimize capacity for a MIMO system. The optimization is done by changing the feeding and matching networks in a circuit simulator that is invoked by the MPA. Finally the software is used on two examples which are analyzed and optimized to illustrate the potential of the method

    Millimeter radiation from a 3D model of the solar atmosphere II. Chromospheric magnetic field

    Full text link
    We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10 percent is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.Comment: 12 pages, 13 figures, accepted for publication in A&

    SUMER Observations Confirm the Dynamic Nature of the Quiet Solar Outer Atmosphere: The Inter-network Chromosphere

    Full text link
    On 12 March 1996 we obtained observations of the quiet Sun with the SUMER instrument. The observa- tions were sequences of 15-20 second exposures of ultraviolet emission line profiles and of the neighboring continua. These data contain signatures of the dynamics of the solar chromosphere that are uniquely useful because of wavelength coverage, moderate signal-to-noise ratios, and image stability. The dominant observed phenomenon is an oscillatory behavior that is analogous to the 3 minute oscillations seen in Ca II lines. The oscillations appear to be coherent over 3-8". At any time they occur over approx. 50 % of the area studied, and they appear as large perturbations in the intensities of lines and continua. The oscillations are most clearly seen in intensity variations in the UV (lambda > 912 A) continua, and they are also seen in the intensities and velocities of chromospheric lines of C I, N I and O I. Intensity brightenings are accompanied by blueshifts of typically 5 km s1^{-1}. Phase differences between continuum and line intensities also indicate the presence of upward propagating waves. Three minute intensity oscillations are occasionally seen in second spectra (C II 1335), but never in third spectra (C III and Si III). Third spectra and He I 584 show oscillations in velocity that are not simply related to the 3 minute oscillations. The continuum intensity variations are consistent with recent simulations of chromospheric dynamics (Carlsson & Stein 1994) while the line observations indicate that important ingredients are missing at higher layers in the simulations. The data show that time variations are crucial for our understanding of the chromosphere itself and for the spectral features formed there.Comment: 8 pages, 3 figs, AASTeX, Accepted for publication in APJ letter

    Validation of Shielding Effectiveness Measurement Method Using Nested Reverberation Chambers by Comparison with Aperture Theory

    Get PDF
    In this paper we revisit existing methods for measuring the shielding effectiveness of material samples using nested reverberation chambers. These methods have the advantage of exposing the sample with a more realistic environment than other methods that are based on single plane wave excitation. That is, in the reverberation chamber the sample is exposed to fields with different incidence directions and polarizations resulting in that the average shielding effectiveness can be measured. We show by comparison with aperture theory that the measured shielding effectiveness corresponds to the theoretical value. We show also by measurements that a corrugation or choke on the periphery of an aperture can be used for increasing the shielding effectiveness for a narrow frequency range

    Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths

    Get PDF
    We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems, and compute Gamow-Teller transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22 and fluorine-24 via an isospin-breaking coupled-cluster technique, with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life of carbon-14 depends on the energy of the first excited 1+ state, the three-nucleon force, and the two-body current
    corecore