274 research outputs found

    The Soil Conditioning Index Model Service

    Get PDF

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    An Exploratory Investigation on the Invasiveness of Environmental Modeling Frameworks

    Get PDF
    Environmental modeling frameworks provide an array of useful features that model developers can harness when implementing models. Each framework differs in how it provides features to a model developer via its Application Programming Interface (API). Environmental modelers harness framework features by calling and interfacing with the framework API. As modelers write model code, they make framework-specific function calls and use framework specific data types for achieving the functionality of the model. As a result of this development approach, model code becomes coupled with and dependent on a specific modeling framework. Coupling to a specific framework makes migration to other frameworks and reuse of the code outside the original framework more difficult. This complicates collaboration between model developers wishing to share model code that ma y have been developed in a variety of languages and frameworks. This paper provides initial results of an exploratory investigation on the invasiveness of environmental modeling frameworks. Invasiveness is defined as th e coupling between application (i.e., model) and framework code used to implement the model. By comparing the implementation of an environmental model across several modeling frameworks, we aim to better understand the consequences of framework design. How frameworks present functionality to modelers through APIs can lead to consequences with respect to model development, model maintenance, reuse of model code, and ultimately collaboration among model developers. By measuring framework invasiveness, we hope to provide environmental modeling framework developers and environmental modelers with valuable in formation to assist in future development efforts. Eight implementations (six framework-based) of Thornthwaite, a simple water balance model, were made in a variety of environmental modeling frameworks and languages. A set of software metrics were proposed and applied to measure invasiveness between model implementation code and framework code. The metrics produced a rank ordering of invasiveness for the framework-based implementations of Thornthwaite. We compared model invasiveness results with several popular software metrics including size in lines of code (LOC), cyclomatic complexity, and object oriented coupling. To investigate software quality implications of framework invasiveness we checked for relationships between the Chidamber and Kemerer (1994) object oriented software metrics and our framework invasiveness measures. For the six framework-based implementations of Thornthwaite we found a five-fold variation in code size (LOC). We observed up to a seven-fold variation in total cyclomatic complexity, and a two to three-fold variation in object oriented coupling. For the model implementations we found that total size, total complexity, and total coupling all had a significant positive correlation. The raw count version of our invasiveness measures correlated with application size (LOC), total cyclomatic complexity, total efferent coupling (fan out) and total afferent coupling (fan in). Large size, complexity, and high levels of coupling between units (classes, modules) in a software system are often cited in software engineering as causes of high maintenance costs due to poor understandability and flexibility of the code. This study provides initial results but further investigation is desired to evaluate the utility of our invasiveness measurement approach as well as the software quality implications of framework invasiveness

    Data Provisioning for the Object Modeling System (OMS)

    Get PDF
    The Object Modelling System (OMS) platform supports initiatives to build or re - factor agro - environmental models and deploy them in different business contexts as model services on cloud computing platforms. Whether traditional desktop, client - server, or emerging cloud deployments, success especially at the enterprise level relies on stable and efficient data provisioning to the models. In this paper we describe recent experience and trends with tools and services to supply data for model inputs. Solutions range from simple pre - processing tools to data services deployed to cloud platforms. Also, systematic, sustained data stewardship and alignment with standards organizations impart stability to data provisioning efforts

    Environmental Modeling Framework Invasiveness: Analysis and Implications

    Get PDF
    Environmental modeling frameworks support scientific model development by providing an Application Programming Interface (API) which model developers use to implement models. This paper presents results of an investigation on the framework invasiveness of environmental modeling frameworks. Invasiveness is defined as the quantity of dependencies between model code and the modeling framework. This research investigates relationships between invasiveness and the quality of modeling code. Additionally, we investigate the relationship between invasiveness and two common framework designs (lightweight vs. heavyweight). Five metrics to measure framework invasiveness were proposed and applied to measure invasiveness between model and framework code of several implementations of Thornthwaite and the Precipitation-Runoff Modeling System (PRMS), two hydrological models. Framework invasiveness measurements were compared with existing software metrics including size (lines of code), cyclomatic complexity, and object-oriented coupling with generally positive correlations being found. We found that models with lower framework invasiveness tended to be smaller, less complex, and have lower coupling. In addition, the lightweight framework implementations of the Thornthwaite and PRMS models were less invasive than the heavyweight framework model implementations. Our initial results suggest that framework invasiveness is undesirable for model code quality and that lightweight frameworks may help reduce invasiveness

    Rat Strain Differences in Susceptibility to Alcohol-Induced Chronic Liver Injury and Hepatic Insulin Resistance

    Get PDF
    The finding of more severe steatohepatitis in alcohol fed Long Evans (LE) compared with Sprague Dawley (SD) and Fisher 344 (FS) rats prompted us to determine whether host factors related to alcohol metabolism, inflammation, and insulin/IGF signaling predict proneness to alcohol-mediated liver injury. Adult FS, SD, and LE rats were fed liquid diets containing 0% or 37% (calories) ethanol for 8 weeks. Among controls, LE rats had significantly higher ALT and reduced GAPDH relative to SD and FS rats. Among ethanol-fed rats, despite similar blood alcohol levels, LE rats had more pronounced steatohepatitis and fibrosis, higher levels of ALT, DNA damage, pro-inflammatory cytokines, ADH, ALDH, catalase, GFAP, desmin, and collagen expression, and reduced insulin receptor binding relative to FS rats. Ethanol-exposed SD rats had intermediate degrees of steatohepatitis, increased ALT, ADH and profibrogenesis gene expression, and suppressed insulin receptor binding and GAPDH expression, while pro-inflammatory cytokines were similarly increased as in LE rats. Ethanol feeding in FS rats only reduced IL-6, ALDH1–3, CYP2E1, and GAPDH expression in liver. In conclusion, susceptibility to chronic steatohepatitis may be driven by factors related to efficiency of ethanol metabolism and degree to which ethanol exposure causes hepatic insulin resistance and cytokine activation

    Observability of the Bulk Casimir Effect: Can the Dynamical Casimir Effect be Relevant to Sonoluminescence?

    Get PDF
    The experimental observation of intense light emission by acoustically driven, periodically collapsing bubbles of air in water (sonoluminescence) has yet to receive an adequate explanation. One of the most intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation, which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant. (About 10 MeV of energy is released per collapse.) However, there are sufficient subtleties involved that others have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the naive sum of 12ω{1\over2}\hbar\omega, which is proportional to the volume, could be relevant. We show that this cannot be the case, based on general principles as well as specific calculations. In the process we further illuminate some of the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of hadrons.Comment: 13 pages, REVTe

    Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease

    Get PDF
    The purpose of this study was to use serial imaging to gain insight into the sequence of pathologic events in Alzheimer's disease, and the clinical features associated with this sequence. We measured change in amyloid deposition over time using serial 11C Pittsburgh compound B (PIB) positron emission tomography and progression of neurodegeneration using serial structural magnetic resonance imaging. We studied 21 healthy cognitively normal subjects, 32 with amnestic mild cognitive impairment and 8 with Alzheimer's disease. Subjects were drawn from two sources—ongoing longitudinal registries at Mayo Clinic, and the Alzheimer's disease Neuroimaging Initiative (ADNI). All subjects underwent clinical assessments, MRI and PIB studies at two time points, approximately one year apart. PIB retention was quantified in global cortical to cerebellar ratio units and brain atrophy in units of cm3 by measuring ventricular expansion. The annual change in global PIB retention did not differ by clinical group (P = 0.90), and although small (median 0.042 ratio units/year overall) was greater than zero among all subjects (P < 0.001). Ventricular expansion rates differed by clinical group (P < 0.001) and increased in the following order: cognitively normal (1.3 cm3/year) <  amnestic mild cognitive impairment (2.5 cm3/year) <  Alzheimer's disease (7.7 cm3/year). Among all subjects there was no correlation between PIB change and concurrent change on CDR-SB (r = −0.01, P = 0.97) but some evidence of a weak correlation with MMSE (r =−0.22, P = 0.09). In contrast, greater rates of ventricular expansion were clearly correlated with worsening concurrent change on CDR-SB (r = 0.42, P < 0.01) and MMSE (r =−0.52, P < 0.01). Our data are consistent with a model of typical late onset Alzheimer's disease that has two main features: (i) dissociation between the rate of amyloid deposition and the rate of neurodegeneration late in life, with amyloid deposition proceeding at a constant slow rate while neurodegeneration accelerates and (ii) clinical symptoms are coupled to neurodegeneration not amyloid deposition. Significant plaque deposition occurs prior to clinical decline. The presence of brain amyloidosis alone is not sufficient to produce cognitive decline, rather, the neurodegenerative component of Alzheimer's disease pathology is the direct substrate of cognitive impairment and the rate of cognitive decline is driven by the rate of neurodegeneration. Neurodegeneration (atrophy on MRI) both precedes and parallels cognitive decline. This model implies a complimentary role for MRI and PIB imaging in Alzheimer's disease, with each reflecting one of the major pathologies, amyloid dysmetabolism and neurodegeneration

    Using prescribed fire in Oklahoma

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
    corecore