71 research outputs found

    Use of a Visual Programming Language and Mobile Devices to Improves Students' Understanding of Process Control Systems

    Get PDF
    Nuestra principal contribución es la aplicación del lenguaje de programación visual (VPL, de sus siglas en inglés “Visual Programming Language”) y los dispositivos móviles (MD, de sus siglas en inglés “Mobile Devices”) para el aprendizaje de los sistemas de control, lo cual mejoró la comprensión de estudiantes regulares considerados dentro de un diseño cuasiexperimental. El empleo de un ambiente de enseñanza que emplea VPL y MD para abordar los sistemas de control de procesos fue la clave para resolver las dificultades de aprendizaje que tenían el estudiante con el método de enseñanza tradicional, y que perduraban a pesar de ya que se estaba considerando la alineación constructiva entre instrucción, aprendizaje y evaluación, actividades auténticas y un enfoque de aprendizaje basado en el diseño. Los elementos gráficos utilizados por VPL, tomados de una biblioteca hecha de bloques reutilizables, con diferentes formas y colores, facilitan la comprensión de los sistemas de control de procesos. También VPL muestra todo el sistema de control de procesos de un vistazo a través de los diferentes MD utilizados, que fueron computadoras portátiles, tabletas y teléfonos inteligentes. Ayudó que todos estos MD son bien conocidos y fáciles de usar para los estudiantes. La evaluación comparativa del rendimiento de aprendizaje de los estudiantes, con y sin el uso de VPL y MD, mostró la efectividad del rediseño en el modo de enseñanza. Se facilitó el aprendizaje de los sistemas de control de procesos, reduciendo las dificultades de la enseñanza tradicional y mejorando la comprensión de los estudiantes. Además, la autoeficacia de los estudiantes se vio afectada positivamente

    Cálculo da eficiência da simetria usando a relação de simetria da marcha, aplicando deformação dinâmica normalizada ao longo do tempo

    Get PDF
    In this paper we propose a new method for symmetry calculation in wearable devices. The problem in this domain is that only discrete features such as stride length, stride duration, or duration of gait phases are used for the symmetry calculation. However, this can lead to failures, since the use of features can result in partial loss of information from the time series. From this we present a possibility to calculate the symmetry by using Dynamic Time Warping (DTW). DTW uses the complete time series for the analysis and is therefore independent of certain features.En este artículo proponemos un nuevo método para el cálculo de la simetría para la resistencia sensible a la fuerza (FSR) en dispositivos portátiles. El problema en este dominio es que solo se utilizan características discretas como la longitud de la zancada, la duración de la zancada o la duración de las fases de la marcha para el cálculo de la simetría. Sin embargo, esto puede conducir a fallas, ya que el uso de funciones puede resultar en una pérdida parcial de información de la serie temporal. A partir de esto, presentamos la posibilidad de calcular la simetría utilizando el método de Dynamic Time Warping (DTW). El DTW utiliza la serie de tiempo completa para el análisis y, por lo tanto, es independiente de ciertas características.Neste artigo propomos um novo método para cálculo de simetria para resistência sensível à força (FSR) em dispositivos portáteis. O problema neste domínio é que apenas são utilizadas características discretas, como comprimento da passada, duração da passada ou duração da fase da marcha para o cálculo de simetria. No entanto, isso pode levar a falhas, pois o uso de funções pode resultar em perda parcial de informações da série temporal. A partir disso, apresentamos a possibilidade de calcular a simetria utilizando o método Dynamic Time Warping (DTW). O DTW usa toda a série temporal para a análise e, portanto, é independente de determinados recursos

    A Methodology Based on Bioacoustic Information for Automatic Identification of Reptiles and Anurans

    Get PDF
    Nowadays, human activity is considered one of the main risk factors for the life of reptiles and amphibians. The presence of these living beings represents a good biological indicator of an excellent environmental quality. Because of their behavior and size, most of these species are complicated to recognize in their living environment with image devices. Nevertheless, the use of bioacoustic information to identify animal species is an efficient way to sample populations and control the conservation of these living beings in large and remote areas where environmental conditions and visibility are limited. In this chapter, a novel methodology for the identification of different reptile and anuran species based on the fusion of Mel and Linear Frequency Cepstral Coefficients, MFCC and LFCC, is presented. The proposed methodology has been validated using public databases, and experimental results yielded an accuracy above 95% showing the efficiency of the proposal

    Real time vehicle recognition: a novel method for road detection

    Get PDF
    Knowing the location of the road in an intelligent traffic systems is one of the most used solutions to ease vehicle detection. For this purpose we propose a vehicle recognition algorithm which performs a real time automatic detection of the zones which vehicles occupy. Such algorithm is capable of functioning under extreme conditions such as low resolution, low capture angle and gray scale images.Peer ReviewedPreprin

    Rede neural convolucional eficiente para detecção e contagem dos glóbulos sanguíneos

    Get PDF
    Blood cell analysis is an important part of the health and immunity assessment. There are three major components of the blood: red blood cells, white blood cells, and platelets. The count and density of these blood cells are used to find multiple disorders like blood infections (anemia, leukemia, among others). Traditional methods are time-consuming, and the test cost is high. Thus, it arises the need for automated methods that can detect different kinds of blood cells and count the number of cells. A convolutional neural network-based framework is proposed for detecting and counting the cells. The neural network is trained for the multiple iterations, and a model having lower validation loss is saved. The experiments are done to analyze the performance of the detection system and results with high accuracy in the counting of the cells. The mean average precision is achieved when compared to ground truth provided to respective labels. The value of the average precision is found to be ranging from 70% to 99.1%, with a mean average precision value of 85.35%. The proposed framework had much less time complexity: it took only 0.111 seconds to process an image frame with dimensions of 640×480 pixels. The system can also be implemented in low-cost, single-board computers for rapid prototyping. The efficiency of the proposed framework to identify and count different blood cells can be utilized to assist medical professionals in finding disorders and making decisions based on the obtained report.El análisis de células sanguíneas es una parte importante de la evaluación de la salud y la inmunidad. Hay tres componentes principales de los glóbulos rojos, los glóbulos blancos y las plaquetas. El recuento y la densidad de estas células sanguíneas se utilizan para encontrar múltiples trastornos como infecciones de la sangre como anemia, leucemia, etc. Los métodos tradicionales consumen mucho tiempo y el costo de las pruebas es alto. Por tanto, surge la necesidad de métodos automatizados que puedan detectar diferentes tipos de células sanguíneas y contar el número de células. Se propone un marco basado en una red neuronal convolucional para la detección y el recuento de las células. La red neuronal se entrena para las múltiples iteraciones y se guarda un modelo que tiene una menor pérdida de validación. Los experimentos se realizan con el fin de analizar el rendimiento del sistema de detección y los resultados con alta precisión en el recuento de células. La precisión promedio se logra al analizar las respectivas etiquetas que hay en la imagen. Se ha determinado que el valor de la precisión promedio, oscila entre el 70% y el 99,1% con un valor medio de 85,35%. El coste computacional de la propuesta fue de 0.111 segundos, procesar una imagen con dimensiones de 640 × 480 píxeles. El sistema también se puede implementar en ordenadores con CPU de bajo costo, para la creación rápida de prototipos. La eficiencia de la propuesta, para identificar y contar diferentes células sanguíneas, se puede utilizar para ayudar a los profesionales médicos a encontrar los trastornos y la toma decisiones, a partir de la identificación automática.O exame de células sanguíneas é uma parte importante da avaliação de saúde e imunidade. Há três componentes principais dos glóbulos vermelhos, glóbulos brancos e plaquetas. A contagem e a densidade dessas células sanguíneas são usadas para encontrar múltiplos distúrbios, tais como infecções no sangue: anemia, leucemia, etc. Os métodos tradicionais são demorados e o custo dos testes é alto. Portanto, surge a necessidade de métodos automatizados que possam detectar diferentes tipos de células sanguíneas e contar o número de células. É proposta uma estrutura baseada em rede neural convolucional para a detecção e contagem de células. A rede neural é treinada para múltiplas iterações e é salvo um modelo que tem uma menor perda de validação. São realizados experimentos para analisar o desempenho do sistema de detecção e os resultados com alta precisão na contagem de células. A precisão média é obtida analisando os respectivos rótulos na imagem. Foi determinado que o valor médio de precisão oscila entre 70 % e 99,1 % com um valor médio de 85,35 %. O custo computacional da proposta foi de 0,111 segundos, processando uma imagem com dimensões de 640 × 480 pixels. O sistema também pode ser implementado em computadores com CPUs de baixo custo para prototipagem rápida. A eficiência da proposta, para identificar e contar diferentes células sanguíneas, pode ser usada para ajudar os profissionais médicos a encontrar distúrbios e tomar decisões, com base na identificação automática

    Network Anomaly Detection With Temporal Convolutional Network and U-Net Model

    Get PDF
    Anomaly detection in network traffic is one of the key techniques to ensure security in future networks. Today, the importance of this topic is even higher, since the network traffic is growing and there is a need to have smart algorithms, which can automatically adapt to new network conditions, detect threats and recognize the type of the possible network attack. Nowadays, there are a lot of different approaches, some of them have reached relatively sufficient accuracy. However, the majority of works are being tested on old datasets, which do not reflect current network conditions and it leads to overfitted results. This is caused by high redundancy of the data and because they fail to reflect the performance of the latest methods in the real-world anomaly detection applications. In this work, we applied a couple of new methods based on convolutional neural networks: U-Net based and Temporal convolutional network based for network attack classification. We trained and evaluated methods on the old dataset KDD99 and the modern large-scale one CSE-CIC-IDS2018. According to results, Temporal convolutional network with LSTM has achieved accuracy 92% and 97% on the KDD99 and the CSE-CIC-IDS2018 respectively, the U-Net model has accuracy 93% and 94% on the KDD99 and the CSE-CIC-IDS2018 respectively. Additionally, we utilized the focal loss function in the Temporal convolutional network with Long Short-Term Memory model, which has positive effect on class imbalance in time-series data. We showed, that the Temporal convolutional network in combination with Long Short-Term Memory network and U-Net model can give higher accuracy compared to other network architectures for network traffic classification. In this work we also proved, that methods trained on the old dataset can easily overfit during training and achieve relatively good results on the testing set, but at the same time, these methods are not so successful on more complex and actual data
    corecore