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Abstract

Nowadays, human activity is considered one of the main risk factors for the life of reptiles
and amphibians. The presence of these living beings represents a good biological indicator
of an excellent environmental quality. Because of their behavior and size, most of these
species are complicated to recognize in their living environment with image devices. Never-
theless, the use of bioacoustic information to identify animal species is an efficient way to
sample populations and control the conservation of these living beings in large and remote
areas where environmental conditions and visibility are limited. In this chapter, a novel
methodology for the identification of different reptile and anuran species based on the
fusion of Mel and Linear Frequency Cepstral Coefficients, MFCC and LFCC, is presented.
The proposed methodology has been validated using public databases, and experimental
results yielded an accuracy above 95% showing the efficiency of the proposal.

Keywords: acoustic data fusion, bioacoustic processing, biological acoustic analysis,
anurans identification, reptiles identification, pattern recognition, cepstral coefficients

1. Introduction

The technological advances open the door to develop and implement tools in different and wide

fields of science. In particular, the use of specific devices to acquire sound, the use of big

computational load, the implementation on programming languages of feature extraction algo-

rithms, and machine learning systems give the option to develop a novel approach to identify

different kinds of animal species from their sounds. This type of tool will do easier Biologist’s

task on their studies about the environment and the behavior of those animal species.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Many features can be used for these tools, but it can be closed according to the kind of species to

analyze. The main features are from videos, images, or sounds. For this work, the idea is to

propose amethodology to identify reptile and anuran species; therefore, all previous features can

be applied. Nevertheless, the main activity of these species is during the night. Hence, the sound

is the most useful feature to know the daily activity and to carry out the species identification.

In this chapter, the bioacoustic information will be the feature used to this development; and a

robust and novel proposal based on the fusion of MFCC and LFCC for the identification of

different reptile and anuran species is presented. The proposed approach has been validated

according to Figure 1 using public datasets, and experimental results show the efficiency of the

proposal. Based on a supervised classification system, this approach is composed by two modes,

training and testing modes. This methodology follows a hold-out cross validation method.

In addition, a feature extraction technique with the highest classification capacity and minimal

computation complexity is implemented. To face this challenge, a set of experiments allowing

the comparison between the performances of the different feature extraction techniques to

apply are shown. The goal is to specify which features are the most effective, obtaining the

bioacoustic characteristics and the identification of reptile and anuran species.

The rest of this chapter is organized as follows: Section 2 shows related works. Section 3

describes the methods for automatic identification of reptile and anuran species. In Section 4,

the experimental methodology and the results are described. Finally, in Section 5, the conclu-

sions derived from this work are summarized.

2. Related works

There are numerous previous studies on the spectral-temporal characteristics of the acoustic

emissions produced by animals, which attempt to analyze the frequency and time parameters

of these emissions to identify patterns in their communications and social iterations [1, 2].

Figure 1. Block diagram of the recognition system based on reptiles and anurans.

Reptiles and Amphibians68



In recent years, various efforts have been made to automate the processing of acoustic infor-

mation using intelligent systems. However, most of the studies conducted in this field have

focused their research on a single animal group and, in most cases, these studies have been

carried out on just a few species. For instance, one of the first attempts to automatically

recognize animal species can be found in [3], where neural networks were used to classify the

vocalizations of two false killer whales.

The sounds of insects have also been studied. As an example of this, in [4], their emissions

were characterized by using LFCC, their fundamental harmonic and the distance of each call.

Authors achieved an 86.3% identification result at species level using Gaussian mixture model

(GMM) as a classifier. On the other hand, in [5], the identification of 14 species of birds using

two different sets of parameters was proposed. The first data set represented sounds using Mel

coefficients and the second consisted of a set of signal parameters such as frequency range,

spectral flow, and Wiener’s entropy. For the classification of the vocalizations, authors pro-

posed a decision tree (DT) where each node of the tree was formed by a support vector

machine. In their experiments, MFCC achieved the best results but separated the species into

two sets of data.

Many other methods have been applied to other groups of animals such as primates [6, 7], bats

[8], fishes [9, 10], elephants [11], dolphins [12], but birds [13–16] have been especially studied

for their wide variety of vocalizations. Recently, however, the acoustic characteristics of the

anurans have managed to attract the attention of the scientific community, due to their rela-

tively simple vocalizations and abundant sound production, which make them ideal test sub-

jects for automatic recognition. Therefore, several studies have been carried out with varying

degrees of success extracting different types of acoustic signal parameters to characterize the

amphibian vocalizations.

One example of this can be found in [17], where four anuran species were classified using

neural networks (NN), applying a discrete wavelet transform (DTW) to get the main features

of each frog call and Fisher’s optimization criterion of reducing the data dimensionality. This

method was able to identify the species with a success rate of 71%, but it required a high

computational cost. Instead, in [18], five frog species were analyzed, computing the threshold-

crossing rate, signal bandwidth, and spectral centroid. With these features, they achieved an

accuracy of 89.05% by using K-Nearest Neighbors (KNN) and 90.30% by applying support

vector machine (SVM). A different approach was proposed by Han et al. in [19] that combined

three types of entropy (Shannon, Rényi, and Tsallis) to recognize nine Microhylidae frog

species. This method managed to correctly identify only seven of the nine frog species due to

the similar entropy values among these species.

Low-level acoustic attributes have been also used to discriminate frog vocalizations at genus

level with a significant rate of success [20]. Coefficient of variation of root-mean-square energy,

dominant frequency, and spectral flux were computed for short-time frames to distinguish

between the advertising calls of four genera, Bufo, Hyla, Leptodactylus, and Rana.

On the other hand, MFCC have been widely used in the recognition of anurans and reptiles in

combination with a variety of pattern recognition techniques, due to their noise robustness and
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computational efficiency. For instance, an interesting approach was developed by [21], that

achieved the classification of 30 frogs and 19 cricket species with success rates above 96% with

a large standard deviation. For this they split the acoustic signal into frames and calculated the

average of the MFCC to train a linear discriminant analysis (LDA) algorithm. Another example

can be found in [22], where the MFCC were tested in three algorithms: Local Mean KNN with

Fuzzy Distance Weighting (LMkNN-FDW), sparse representation classifier (SRC), and SVM.

LMkNN-FDW outperformed SRC and SVM, obtaining the highest-performance results on 20

frog species.

At present, deep learning techniques are being employed in frog acoustics classification [23–25],

applying convolutional neural networks (CNN). However, most of these works also use MFCC

as parameters, relying on the discriminatory capacity of the classifier without looking for a better

representation of the acoustic signal information. Table 1 summarizes some different techniques

and algorithms that have been used in the recognition of anurans.

Lastly, the class Reptilia, however, has received little attention due to its limited sound produc-

tion. In fact, to the best of our knowledge, the acoustic signals for reptile’s automatic identifi-

cation have been poorly considered in literature, being this work one of the first research to

address this approach. Although only a few species such as crocodiles present an important

repertory of calls. In this research, the sound emitted by reptiles has been intensively studied to

verify the capacity of their calls for inter-species identification.

References Parametrization Classifier

Yen and Fu [17] Discrete wavelet transform (DTW) NN

Lee et al. [21] MFCC LDA

Brandes [43] Peak frequencies and bandwidth HMM

Acevedo et al. [41] Call length, maximum and minimum frequencies,

maximum power, and the frequency

of maximum power

SVM, DT and LDA

Huang et al. [18] Spectral centroid, signal bandwidth, and threshold-crossing

rate

KNN and SVM

Han et al. [19] Shannon, Rényi, and Tsallis entropies KNN

Yuan et al. [27] MFCC and linear predictive coding (LPC) KNN

Bedoya et al. [42] MFCC Learning algorithm for multivariate

data analysis (LAMDA)

Chen et al. [44] Length of the segmented syllables Multi stage average spectrum (MSAS)

Xie et al. [28] Dominant frequency, syllable duration, frequency

modulation, oscillation rate, and energy modulation

PCA and KNN

Hassan et al. [25] MFCC Convolutional neural networks (CNN)

Table 1. Summary of amphibian acoustic identification methods proposed by literature.
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3. Methods

The proposed methodology in this chapter is illustrated in Figure 2 and is composed by the

following methods. First, both reptile and anuran audio recordings are processed by a seg-

mentation algorithm to separate the acoustic signal in syllables. Next, the cepstral feature

parameters, MFCC and LFCC, are extracted and fused in a vector standing for the main

characteristics for each syllable. Then, these vectors are used as inputs in the classification

phase for training and testing a classifier implemented by a machine learning algorithm. Next,

a detailed description of each method is defined.

3.1. Signal segmentation

In order to obtain useful features for the automatic identification, the audio recordings are split

into as many syllables as possible. This process is based on the work of Härmä [26] for acoustic

signal segmentation. The algorithm makes use of the signal spectrogram to detect each sound

and separate it into syllables. The spectrogram was determined by short-time Fourier trans-

form (STFT) with the following Hamming window sizes which have been heuristically com-

puted: 256 samples and 33% overlap for reptiles, and 512 samples and 25% overlap for anurans

corpus. As a result, the matrix H f ; tð Þ represents the computed signal spectrum where f is the

frequency and t the time. The segmentation procedure performs the following steps repeatedly

until the end of the spectrogram is reached:

1 Find tn and f n such that H f n; tn
� ��

�

�

� ≥ H f ; tð Þj j computing the amplitude in tn as

Υn 0ð Þ ¼ 20 log 10 H fn; tnð Þj jð Þ.

2 From tn, seek the highest peak between t > tn and t < tn until Υn t� tnð Þ < Υn 0ð Þ � β dB,

where β is the stopping criteria. For reptile and anuran sounds, β has been set to 25 and

20 dB, respectively. The time interval [tn � ts,tn þ te� represents the limits of the syllable.

3 This trajectory which represents a syllable is stored and then, is deleted from the matrix.

The index n is updated to n + 1.

3.2. Features extraction and fusion

After carrying out the segmentation process, frequency domain characteristics are computed to

gather useful information for the automatic classification. MFCC and LFCC have been applied in

Figure 2. The proposed methodology for automatic acoustic identification of reptiles and anurans.
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animal bioacoustic classification [4, 22, 27, 28], because they have a low computational cost and

their implementations are easy. On the other hand, low frequency sounds are emitted by most

species of reptiles and anurans, that is, in a 0–20 kHz interval, such as human auditory range.

Thus, to reinforce the low frequency range, MFCC have been considered. Nevertheless, both

corpuses can produce sounds above 20 kHz, and hence, to get a characterization in high

frequency ranges, LFCC have also been used [29]. Thus, both cepstral coefficients are computed

to parametrize the audio signal, because they contain information of lower and higher frequency.

These features are computed via STFT using 25 milliseconds Hamming window overlapping

at 50%. In order to get this value, a set of experiments were carried out where the window size

was modified from 10 ms to 1 s. After that, the discrete Fourier transform (DFT) is computed in

each signal frame, and a bank of 40 and 26 triangular band pass filters for reptiles and anurans,

respectively, are wrapped to the resultant spectrum. The MFCC are obtained by applying the

discrete cosine transform (DCT) to log-magnitude filter outputs, log Υij j, and taking the lowest

values. MFCC features are calculated as follows, Eq. (1):

MFCCj ¼
X

B

i¼1

log Υij j cos j i� 0:5ð Þ½ �π=Bð Þ, 1 ≤ j ≤N (1)

where j indicates the MFCC index, B is the number of triangular filters, and N is the MFCC to

calculate.

On the other hand, LFCC are calculated using Eq. (2), where K is the number of DFT magni-

tude coefficients Xi.

LFCCj ¼
X

K

i¼1

log Xij j cos
jiπ

K

� �� �

, 1 ≤ j ≤N (2)

For both features, the coefficients number has been obtained by carrying out a set of experi-

ments to achieve the highest accuracy in the classification phase. Thus, 18 coefficients have

been taken for both MFCC and LFCC.

Finally, the cepstral coefficients are fused, concatenating the features as in Eq. (3), where each

syllable is represented by a row. Hence, each row contains 36 coefficients, and the full matrix

represents the coefficients extracted for all syllables of a species. Thus, a broad spectral repre-

sentation of a call is used as input to the classification phase.

Features ¼

MFCC1 LFCC1

… …

MFCCn LFCCn

0

B

@

1

C

A
(3)

3.3. Classification

To validate the robustness of the proposed methodology based on cepstral coefficients fusion,

three machine learning algorithms have been evaluated in the classification stage: K-nearest

neighbor, random forest, and support vector machine.
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3.3.1. K-nearest neighbor

KNN was proposed by Cover [30], and infers the new data classification based on the closest

training samples. The machine learning algorithm considers the K-nearest point distances to

the observation to predict which class is similar. Then, to calculate the class prediction, simple

majority of neighbors is used. In this chapter, the number of nearest neighbors has been fixed

to k ¼
ffiffiffiffi

N
p

, where N denotes the length of the cepstral coefficients.

3.3.2. Random forest

RF is a machine learning algorithm presented by Breiman [31]. It is able to model non-lineal

input variables, and in addition, it is robust to outliers in the training dataset. RF is an

ensemble of decision trees. The generalization error converges to a limit when the number of

trees in the forest becomes large. An average of the output votes from all the trees in the forest

is computed for the prediction of the classes, Eq. (4). In this study, a value of K = 200 trees was

utilized because it returns better results, with predictor variables m ¼
ffiffiffiffi

N
p

, where N is the

length of the cepstral coefficients.

Prediction ¼ 1

K

X

K

i¼1

yi, where yn is the nth tree response (4)

3.3.3. Support vector machine

SVM [32] is a robust supervised learning technique and has been used to resolve the acoustic

signal classification. The aim is to create non-overlapping partitions mapping the data as

elements of a higher-dimensional space. SVM computes the classification of geometric param-

eters getting the optimal hyperplane from the training data which separates the data perfectly

into two classes. Nevertheless, sometimes the training data cannot be separated lineally. In

those cases, and in order to divide the classes, a non-linear kernel function is used to project the

data into a higher dimensional space. In this chapter, an implementation based on LIBSVM

library [33] was used implementing a C-Support Vector Classification (C-SVC) [34], which uses

a decision function as showed in Eq. (5), where K is a radial basis function (RBF) kernel,

k x; x0ð Þ ¼ e �c x�x0k k2ð Þ k x; x0ð Þ ¼ e �γ x�x0k k2ð Þ. In order to carry out the multiclass classification,

the strategy “one-versus-one” is performed generating one SVM for each pair of classes. Thus,

for N different classes, N(N � 1)/2 classifiers are necessary to identify the samples.

f xð Þ ¼ sign
X

l

i¼1

yiαiK x; x0ð Þ þ b

 !

, yi ∈ 1;�1f g (5)

Lastly, a grid-search was implemented to adjust the SVM parameters (γ = 2�12, 2�11, …, 22;

C = 2�2, 2�1, …, 210) using cross-validation to find the optimum kernel gamma parameter, γ,

and the value of the penalty parameter of the error term (C). The values obtained for the kernel

gamma were 0.45 and 1.45 for reptile and anuran corpus, respectively. For the penalty error

term, the values were 30 and 20.
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4. Experimental methodology and results

In this section, the datasets and the experimental results obtained from experiments carried out

to evaluate the effectiveness of the proposed methodology are described and discussed. Exper-

iments were focused onto comparing accuracy using the following different features: MFCC,

LFCC, and MFCC/LFCC fusion. The syllables generated by the segmentation phase have been

randomly rearranged and split in half—one for training the model and the rest for testing (k-

fold cross-validation with k = 2). For each class, the accuracy has been evaluated as in Eq. (6),

and then the results have been averaged. Using the feature with the best accuracy results,

experiments varying the training size were also carried out, from 5 to 50% of the full dataset.

The aim is to validate the performance and the robustness of proposed methodology.

In order to validate the experimental results, and to ensure statistical independence, all exper-

iments have been repeated 100 times. The acoustic classification system was implemented in

Matlab, and two classifiers were used for each dataset: KNN and SVM classifiers for reptile

identification, and RF and SVM classifiers for anuran identification. The experiments were run

in a non-dedicated Windows machine based on an Intel Core i7 4510 with a clock speed of

2 GHz, and 16 GB of RAM.

Accuracy ¼

Syllables Correctly Identified

Total Number of Syllabes
� 100 (6)

4.1. Datasets

Two different datasets have been built to validate the proposed methodology in this chapter.

Each dataset contains audio content of anurans and reptiles, respectively.

4.1.1. Anurans dataset

The following three databases of anurans have been used to build the anurans dataset: the

AmphibiaWeb database [35], a compilation of audio recordings of the amphibians of Cuba [36]

and a sound guide of frogs and toads from southern Brazil and Uruguay [37]. AmphibiaWeb

was created by the University of California (Berkley), where on-line information related to

amphibian conservation and biology is stored. The recordings contain significant background

noise and were mainly gathered in their own habitats. In addition, the signals were recorded

with different sample formats and rates. From this database, a total of 41 anurans of several

taxonomy families were selected, where most of them are anurans from previous literature

studies [27, 28]. On the other hand, the collection of amphibians of Cuba contains 99 record-

ings of several types of advertisement and alert calls of 58 species, most of them endemic.

Finally, the sound guide from Brazil and Uruguay is composed by 109 frogs and toads. From

them, nine species have been rejected because they do not have enough samples to fit and test

the model. Hence, a total of 199 species compose the whole anurans dataset. Table 2 shows the

number of segmented syllables grouped by taxonomic family.
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4.1.2. Reptiles dataset

Sound repositories of reptiles is quite limited, because they have not been acoustically and

exhaustively analyzed. Thus, reptile recordings form three Internet sound collections have

been extracted to build the dataset. The Animal Sound Archive at the Museum für

Naturkunde in Berlin [38] was the principal source of reptile audio recordings. It stores

120,000 tracks of diverse species which are freely available from their database. The second

collection used was California Herps [39] which contains some Squamata sounds. Finally, a

Dataset Family Number of Species Number of syllables

AmphibiaWeb Bufonidae 6 270

Dendrobatidae 2 36

Hemiphractidae 1 34

Hylidae 9 309

Hyperoliidae 2 84

Leptodactylidae 3 110

Mantellidae 7 241

Microhylidae 2 52

Myobatrachidae 6 239

Ranidae 1 19

Scaphiopodidae 2 170

Cuba Bufonidae 10 1141

Eleutherodactylidae 42 2951

Hylidae 4 737

Ranidae 2 372

Brazil and Uruguay Alsodidae 1 210

Bufonidae 10 1500

Brachycephalidae 2 124

Centrolenidae 1 33

Cycloramphidae 2 46

Hemiphractidae 1 32

Hylidae 49 4633

Hylodidae 5 353

Leptodactylidae 23 2971

Microhylidae 1 54

Odontophrynidae 5 914

Table 2. Anurans dataset.
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small number of tortoise vocalizations from the California Tortoise Club [40] collection was

added to the dataset. Therefore, the whole dataset used in this work is formed by 1895 samples

matching to 27 different reptile species and six family groups. Table 3 shows the number of

segmented syllables grouped by taxonomic family.

4.2. Analysis of accuracy

4.2.1. Anurans results

Table 4 indicates the accuracy results for each set of features and the computation time for

training and testing by iteration. As it can be observed, Mel coefficients perform better results

than LFCC when the number of anurans is small. Nevertheless, when it is increased, LFCC

shows a superior performance because higher frequencies are better characterized. Hence, a

MFCC and LFCC fusion is proposed to characterize the anuran sounds in lower as well as

higher frequencies. The experiments reinforce that this approach improves the classification

rate on all databases and the aggregate dataset. As it can be appreciated, RF is clearly

outperformed by SVM in all experiments. Furthermore, a successful classification with an

accuracy above 95% using the aggregate dataset was achieved. Regarding the training time,

RF takes more computation time than SVM. Nevertheless, RF is clearly faster when testing is

carried out. It is more noticeable when the species number increases.

A detailed analysis indicates that an accuracy of 98.70% was achieved for AmphibiaWeb

database, outperforming other research in terms of number of species identified and accuracy

[21, 22, 27, 28, 41–44]. Furthermore, 100% accuracy was reached for 24 anurans. On the other

hand, the Cuba database stores some species with a reduced number of syllables, but even in

this situation, the features fusion achieved a successful classification improving the accuracy

about 5%. An accuracy of 84.90% was the worst result obtained, and a 100% classification rate

was reached by 10 species. The mean total accuracy was 96.40% in 58 frog species. Regarding

the Brazil–Uruguay dataset, the MFCC and LFCC fusion yielded an identification rate of

95.30% over 100 anurans, where only 16 species achieved an accuracy below 90%. Finally, a

success rate of 95.29% was successfully achieved using the aggregate dataset. To the best of our

knowledge, it is the largest number of toads and frogs identified using acoustic signals. The

proposed methodology in this chapter was compared with some research in literature, Table 5.

As can be seen, this approach is more robust than other research reaching a higher success rate.

Family Number of species Number of syllables

Alligatoridae 3 28

Gekkonidae 2 215

Helodermatidae 1 383

Viperidae 12 950

Elapidae 1 10

Testudinidae 8 309

Table 3. Reptiles dataset.
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Furthermore, in this work, three public datasets were used, and therefore, this approach can be

validated and contrasted.

4.2.2. Reptiles results

Table 6 shows the accuracy results for each set of features and the computation time for

training and testing by iteration. As it can be observed, both MFCC and LFCC features obtain

similar results. As is known, most of the reptile sounds are from 0.1 to 4 kHz. Therefore, Mel

coefficients reinforce the lowest frequencies because those spectrum regions are enhanced.

Nevertheless, some reptiles, such as lizards, emit high-frequency components even into the

ultrasound range (>20 kHz). MFCC features contain poor information at these frequencies,

because the area under the Mel-filter bank grows at higher frequencies. Hence, LFCC are more

appropriate to parametrize those reptile sounds. Thus, in some experiments, LFCC surpasses

MFCC when the best classifier is used, SVM. The experiments confirm that the MFCC/LFCC

data fusion enhances the identification rate. As it can be appreciated, SVM slightly outperforms

Database Features Classifier Training Time(s) Testing Time (s) Accuracy � std

AmphibiaWeb (41anurans) MFCC RF 0.68 0.04 96.10% � 5.69

SVM 0.11 0.08 97.82% � 3.21

LFCC RF 0.69 0.04 95.83% � 6.61

SVM 0.11 0.09 96.81% � 4.36

MFCC+LFCC RF 1.03 0.05 98.00% � 3.92

SVM 0.15 0.09 98.70% � 2.58

Cuba (58 frogs) MFCC RF 3.37 0.08 86.08% � 16.76

SVM 0.49 0.51 91.64% � 8.85

LFCC RF 3.19 0.08 90.69% � 10.59

SVM 0.47 0.49 90.92% � 10.02

MFCC+LFCC RF 4.94 0.08 92.54% � 9.33

SVM 0.81 0.57 96.40% � 4.03

Brazil and Uruguay (100 anurans) MFCC RF 10.13 0.17 84.74% � 15.28

SVM 1.73 4.33 90.53% � 9.57

LFCC RF 10.48 0.18 88.03% � 11.23

SVM 1.64 4.51 91.69% � 9,18

MFCC+LFCC RF 15.54 0.17 91.18% � 10.70

SVM 4.86 5.97 95.30% � 5.28

AmphibiaWeb+Cuba+Brazil-Uruguay

(199 anurans)

MFCC+LFCC RF 69.78 0.42 90.29% � 12.85

SVM 56.4 38.95 95.29% � 5.63

Table 4. Accuracy results for anurans dataset.
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KNN in all experiments. Furthermore, this approach yielded a successful classification with an

accuracy above 98%. Regarding the training time, both KNN and SVM take similar computa-

tional cost time because the number of reptile species is small.

A detailed analysis reveals that a 100% accuracy was reached in 9 species, regardless of the

cepstral coefficients employed. It is due to the spectral distribution of calls in those reptile

species is clearly different from others. Nevertheless, the best classification results were achieved

by usingMFCC/LFCC feature fusion, outperforming bothMFCC and LFCC, and independently

of the used classifier. Thus, it is confirmed that this methodology achieves a better parametriza-

tion of the reptile sounds by keeping in account important information of low- and high-

frequency zones. It allows to increase the system accuracy. Finally, it should be noted that the

MFCC/LFCC fusion identified 13 species with an accuracy of 100%.

Reference Dataset Features Classifier Accuracy (%)

Lee et al. [21] 30 frogs and 19 crickets MFCC LDA 96.8 and 98.1

Acevedo et al. [41] 9 frogs and 3 birds

from Puerto Rico

Call duration/max. and min. Frequency/max.

power/frequency of max. power

SVM 94.95

Chen et al. [44] 18 frogs Syllable length/MSAS Template

based

94.3

Yuan et al. [27] 8 frogs (AmphibiaWeb) MFCC KNN 98.1

Xie et al. [28] 16 frogs from Australia MFCC KNN 90.5

In this work 41 anurans

(AmphibiaWeb)

MFCC/LFCC SVM 98.7

58 frogs from Cuba 96.4

100 anurans from

Brazil-Uruguay

95.3

199 species from all

datasets

95.29

Table 5. State of the art comparison.

Features Classifier Training time (s) Testing time (s) Accuracy

MFCC KNN 0.08 0.03 96.00% � 7.20

SVM 0.13 0.06 95.84% � 7.74

LFCC KNN 0.07 0.03 92.98% � 9.95

SVM 0.15 0.05 96.15% � 5.35

MFCC+LFCC KNN 0.12 0.05 97.78% � 3.33

SVM 0.23 0.06 98.52% � 3.22

Table 6. Accuracy results for reptiles dataset.
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4.3. Analysis of training dataset size

In order to validate the robustness of this methodology, the efficiency of the system was tested

by varying the training dataset size from 5 to 50%. All experiments were carried out by using

the MFCC/LFCC features fusion and SVM as classifier.

4.3.1. Anurans results

Table 7 shows the experimental results varying the training size of the whole dataset of

anurans, 199 species. As can be seen, larger training datasets are useful to improve the

performance of this approach. In addition, an accuracy above 90% is yielded using only a

20% training size. It should be noted that the recordings of some species have very few

syllables, even with only three samples. Therefore, when training size is considerably reduced,

the classifier is modeled with only one sample. Precision, recall, and F-Measure measurements

have been also computed by varying the training dataset size. As shown, these measurements

follow a similar behavior related with accuracy, increasing when the training size does, and

keeping values above 0.9 using only a 20% training size and close to 0.95 using a 40% of

training size. Thus, small training datasets allow to make less the time needed and the compu-

tational cost to calculate the classifier model. This evidence that the fusion of both MFCC and

LFCC features is efficient for modeling the discriminant information in the anurans sounds.

Furthermore, the data fusion allows to obtain classification results above 80% in all cases,

demonstrating the robustness of the feature fusion method.

4.3.2. Reptiles results

Table 8 shows the experimental results varying the training size of the whole dataset of

reptiles, 27 species. As can be seen, the system accuracy increases when the training size does,

and the proposed methodology can obtain good results with a low number of training sam-

ples. Thus, when the number of samples is close to 5%, this approach decreases in effective-

ness, but even in these circumstances, the system yields an accuracy above 85%, keeping in

mind that only one syllable characterizes most of the reptile species. For other training cases,

the accuracy is above 90%. Furthermore, precision, recall, and F-Measure measurements also

follow a similar behavior related with accuracy, that is, when the training size increases, the

measurements also do, keeping values close to 0.9 using only a 5% training size and close to

Training size (%) Accuracy (%) � std Precision Recall F-Measure

5 80.01% � 18.05 0.86 0.80 0.83

10 86.94% � 12.94 0.91 0.87 0.89

20 91.38% � 8.71 0.94 0.91 0.92

30 93.53% � 7.14 0.95 0.93 0.94

40 94.48% � 6.72 0.96 0.94 0.95

50 95.29% � 0.16 0.96 0.95 0.96

Table 7. Classifier performance with different training size for anurans dataset.
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0.97 using a 30% of training size. Furthermore, a lower training dataset size offers savings in

computational cost and time needed to compute the classifier model. This evidences that the

fusion of both cepstral coefficients can be used in an effective way for discerning important

information in the reptile sounds. Hence, the data fusion achieves the classification results

above 85% in all cases, validating the robustness of the MFCC/LFCC features fusion.

5. Conclusions

Automatic species identification based on bioacoustic information has become an attractive

research topic due to growing interest among biologists for sampling populations and control-

ling the conservation of these living beings in large and remote areas where environmental

conditions and visibility are limited. In this chapter, a methodology based on the fusion of

cepstral coefficients, MFCC and LFCC, was proposed and validated using public datasets of

reptile and anuran species. This data fusion allows to characterize the acoustic signal with both

low- and high-frequency components, being more robust against noise and increasing the

classification rate. The results of the proposed methodology are encouraging with a mean

accuracy of 95.29 and 98.52% for anurans and reptiles, respectively.

Regarding the anurans identification, the proposed methodology was collated with some

research of literature, being more robust and identifying more species than the other tech-

niques. Furthermore, public databases have been used, and therefore, this approach can be

validated and contrasted. On the other hand, as far as authors know, the anurans dataset

contains the largest number of toads and frogs automatically identified by acoustic character-

istics. For reptile identification, the authors are not keeping in mind about other researches that

have considered the use of reptile acoustic signals for species classification. Even so, the

experimental results have demonstrated that the MFCC/LFCC feature fusion achieves a broad

characterization of the acoustic signal, yielding a high identification rate.

Finally, the proposed methodology described in this chapter has been analyzed using scenarios

with reduced training dataset, validating the robustness of the system. It declines in effective-

ness when the training dataset size decreases, but even so, with only a 5% of the samples for

training, this approach yields an accuracy above 80%, keeping in mind that many species are

only characterized by only one syllable.

Training size (%) Accuracy (%) � std Precision Recall F-Measure

5 85.50% � 20.06 0.91 0.85 0.88

10 91.03% � 14.06 0.94 0.91 0.92

20 94.81% � 8.01 0.96 0.94 0.95

30 96.86% � 5.39 0.97 0.96 0.97

40 97.88% � 3.76 0.98 0.97 0.98

50 98.52% � 3.26 0.98 0.98 0.98

Table 8. Classifier performance with different training size for reptiles dataset.
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