2,479 research outputs found

    Spatio-temporal distribution of juvenile oceanic whitetip shark incidental catch in the western Indian Ocean

    Get PDF
    Oceanic whitetip shark (Carcharhinus longimanus) is an important top predator in pelagic ecosystems currently classified as globally Critically Endangered by the International Union for the Conservation of Nature. This species is incidentally caught by fisheries targeting highly migratory tunas and billfishes throughout the Indian Ocean. Understanding the temporal, spatial and environmental factors influencing the capture of this species is essential to reduce incidental catches. In this study, we used generalized additive models to analyze the spatio-temporal distributions of the juvenile oceanic whitetip shark catches and the environmental conditions in the western Indian Ocean using observer data from 2010 to 2020 of the European Union and associated flags purse seine fishery. We found sea surface temperature and nitrate concentration to be the most important environmental variables predicting the probability of catching an oceanic whitetip shark. A higher probability of capture was predicted in areas where sea surface temperature was below 24°C and with low nitrate concentrations close to zero and intermediate values (1.5-2.5 mmol.m-3). We also found a higher probability of capture in sets on fish aggregating devices than in sets on free schools of tuna. The Kenya and Somalia basin was identified to have higher probabilities of capture during the summer monsoon (June to September) when upwelling of deep cold waters occurs. We provide the first prediction maps of capture probabilities and insights into the environmental preferences of oceanic whitetip shark in the western Indian Ocean. However, the causal mechanisms behind these insights should be explored in future studies before they can be used to design spatial management and conservation strategies, such as time-area closures, for bycatch avoidance.Postprin

    Open questions in utility theory

    Get PDF
    Throughout this paper, our main idea is to explore different classical questions arising in Utility Theory, with a particular attention to those that lean on numerical representations of preference orderings. We intend to present a survey of open questions in that discipline, also showing the state-of-art of the corresponding literature.This work is partially supported by the research projects ECO2015-65031-R, MTM2015-63608-P (MINECO/ AEI-FEDER, UE), and TIN2016-77356-P (MINECO/ AEI-FEDER, UE)

    On Composite Two Higgs Doublet Models

    Get PDF
    We investigate composite two Higgs doublet models realized as pseudo Goldstone modes, generated through the spontaneous breaking of a global symmetry due to strong dynamic at the TeV scale. A detailed comparative survey of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x SU(4), is made. We point out choices for the Standard Model fermion representations that can alleviate some phenomenological constraints, with emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic lagrangian for several models leading to Two Higgs Doublets and identify the anomalous contributions to the T parameter. Moreover, we describe a model based on the breaking SO(9)/SO(8)SO(9)/SO(8) in which there is no tree-level breaking of custodial symmetry, discussing also the possible embeddings for the fermion fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor safe model based on SO(9)/SO(8). Matches published versio

    Stability study of a model for the Klein-Gordon equation in Kerr spacetime

    Full text link
    The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein-Gordon equation, describing the propagation of a scalar field of mass μ\mu in the background of a rotating black hole. Rigorous results proof the stability of the reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters aa extremely close to 1. Among others, the paper derives a model problem for the equation which supports the instability of the field down to a/M0.97a/M \approx 0.97.Comment: Updated version, after minor change

    Supermembrane interaction with dynamical D=4 N=1 supergravity. Superfield Lagrangian description and spacetime equations of motion

    Full text link
    We obtain the complete set of equations of motion for the interacting system of supermembrane and dynamical D=4 N = 1 supergravity by varying its complete superfield action and writing the resulting superfield equations in the special gauge where the supermembrane Goldstone field is set to zero. We solve the equations for auxiliary fields and discuss the effect of dynamical generation of cosmological constant in the Einstein equation of interacting system and its renormalization due to some regular contributions from supermembrane. These two effects (discussed in late 70th and 80th, in the bosonic perspective and in the supergravity literature) result in that, generically, the cosmological constant has different values in the branches of the spacetime separated by the supermembrane worldvolume.Comment: 23 pages, no figures. V2 two references added, 24 page

    New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel

    Get PDF
    By 2020, the global health community aims to control and eliminate human helminthiases, including schistosomiasis in selected African countries, principally by preventive chemotherapy (PCT) through mass drug administration (MDA) of anthelminthics. Quantitative monitoring of anthelminthic responses is crucial for promptly detecting changes in efficacy, potentially indicative of emerging drug resistance. Statistical models offer a powerful means to delineate and compare efficacy among individuals, among groups of individuals and among populations.; We illustrate a variety of statistical frameworks that offer different levels of inference by analysing data from nine previous studies on egg counts collected from African children before and after administration of praziquantel.; We quantify responses to praziquantel as egg reduction rates (ERRs), using different frameworks to estimate ERRs among population strata, as average responses, and within strata, as individual responses. We compare our model-based average ERRs to corresponding model-free estimates, using as reference the World Health Organization (WHO) 90 % threshold of optimal efficacy. We estimate distributions of individual responses and summarize the variation among these responses as the fraction of ERRs falling below the WHO threshold.; Generic models for evaluating responses to anthelminthics deepen our understanding of variation among populations, sub-populations and individuals. We discuss the future application of statistical modelling approaches for monitoring and evaluation of PCT programmes targeting human helminthiases in the context of the WHO 2020 control and elimination goals

    Understanding the threats posed by non-native species: public vs. conservation managers.

    Get PDF
    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone

    Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue

    Get PDF
    The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines

    Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

    Get PDF
    The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system
    corecore