140 research outputs found

    Spherical cap bubbles with a toroidal bubbly wake

    No full text
    International audienceThe prediction of the rise speed of large buoyant bubbles is a fundamental fluid mechanics problem relevant to a number of applications ranging from carbon sequestration technology to chemical engineering or astrophysics. Single large bubbles typically have a spherical cap shape with bubbles of larger volume rising faster than the ones of smaller volume. However, except in well-controlled experiments, the released gas splits into a leading cap bubble, followed by a crown of satellite bubbles that can contain up to 50% of the total volume of gas. We find that in this case the satellite bubbles rearrange in a characteristic toroidal crown and the leading bubble takes a lenticular shape. The rise speeds of these multipart bubble systems and the ratios of the torus radii to the leading cap curvature radii are quite constant and predictable in the mean and are furthermore independent of the gas partitioning between the leading lenticular bubble and the crown of satellite bubbles. We also find that this multipart bubble system rises slightly faster than a single cap bubble with the same total injected volume of gas. © 2008 American Institute of Physics

    Stability of Ge-related point defects and complexes in Ge-doped SiO_2

    Full text link
    We analyze Ge-related defects in Ge-doped SiO_2 using first-principles density functional techniques. Ge is incorporated at the level of ~ 1 mol % and above. The growth conditions of Ge:SiO_2 naturally set up oxygen deficiency, with vacancy concentration increasing by a factor 10^5 over undoped SiO_2, and O vacancies binding strongly to Ge impurities. All the centers considered exhibit potentially EPR-active states, candidates for the identification of the Ge(n) centers. Substitutional Ge produces an apparent gap shrinking via its extrinsic levels.Comment: RevTeX 4 pages, 2 ps figure

    Reconstruction of the Primordial Power Spectrum by Direct Inversion

    Full text link
    We introduce a new method for reconstructing the primordial power spectrum, P(k)P(k), directly from observations of the Cosmic Microwave Background (CMB). We employ Singular Value Decomposition (SVD) to invert the radiation perturbation transfer function. The degeneracy of the multipole \ell to wavenumber kk linear mapping is thus reduced. This enables the inversion to be carried out at each point along a Monte Carlo Markov Chain (MCMC) exploration of the combined P(k)P(k) and cosmological parameter space. We present best--fit P(k)P(k) obtained with this method along with other cosmological parameters.Comment: 23 pages, 9 figure

    Evidence of two-electron tunneling interference in Nb/InAs junctions

    Full text link
    The impact of junction transparency in driving phase-coherent charge transfer across diffusive semiconductor-superconductor junctions is demonstrated. We present conductivity data for a set of Nb-InAs junctions differing only in interface transparency. Our experimental findings are analyzed within the quasi-classical Green-function approach and unambiguously show the physical processes giving rise to the observed excess zero-bias conductivity.Comment: 10 pages (RevTex), 4 figures (PostScript), accepted for pubblication in Physical Review

    Reconciling inflation with openness

    Full text link
    It is already understood that the increasing observational evidence for an open Universe can be reconciled with inflation if our horizon is contained inside one single huge bubble nucleated during the inflationary phase transition. In this frame of ideas, we show here that the probability of living in a bubble with the right Ω0\Omega_0 (now the observations require Ω0.2\Omega_0 \approx .2) can be comparable with unity, rather than infinitesimally small. For this purpose we modify both quantitatively and qualitatively an intuitive toy model based upon fourth order gravity. As this scheme can be implemented in canonical General Relativity as well (although then the inflation driving potential must be designed entirely ad hoc), inferring from the observations that Ω0<1\Omega_0 < 1 not only does not conflict with the inflationary paradigm, but rather supports therein the occurrence of a primordial phase transition.Comment: 4 pages, one postscript figure, to be published on Physical Review D PACS: 98.80. C

    New D=4 gauged supergravities from N=4 orientifolds with fluxes

    Full text link
    We consider classes of T_6 orientifolds, where the orientifold projection contains an inversion I_{9-p} on 9-p coordinates, transverse to a Dp-brane. In absence of fluxes, the massless sector of these models corresponds to diverse forms of N=4 supergravity, with six bulk vector multiplets coupled to N=4 Yang--Mills theory on the branes. They all differ in the choice of the duality symmetry corresponding to different embeddings of SU(1,1)\times SO(6,6+n) in Sp(24+2n,R), the latter being the full group of duality rotations. Hence, these Lagrangians are not related by local field redefinitions. When fluxes are turned on one can construct new gaugings of N=4 supergravity, where the twelve bulk vectors gauge some nilpotent algebra which, in turn, depends on the choice of fluxes.Comment: 51 pages, 1 figure. Latex. Reference added. Typos corrected. Discussion on gaugings expande

    A novel method for the absolute fluorescence yield measurement by AIRFLY

    Get PDF
    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 200

    Dressed Sliver solutions in Vacuum String Field Theory

    Full text link
    We consider a new class of solutions (dressed slivers) in Vacuum String Field Theory, which represent D25-branes. For each dressed sliver we introduce a deformation parameter and define a family of states which are characterized by new abelian star-subalgebras. We show that this deformation parameter can be used as a regulator: it allows us to define for each such solution a finite norm and energy density. Finally we show how to generalize these results to parallel coincident and to lower dimensional branes.Comment: 39 pages, JHEP style. v2:minor corrections, references adde

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode

    Vortex dynamics in trapped Bose-Einstein condensate

    Full text link
    We perform numerical simulations of vortex motion in a trapped Bose-Einstein condensate by solving the two-dimensional Gross-Pitaevskii Equation in the presence of a simple phenomenological model of interaction between the condensate and the finite temperature thermal cloud. At zero temperature, the trajectories of a single, off - centred vortex precessing in the condensate, and of a vortex - antivortex pair orbiting within the trap, excite acoustic emission. At finite temperatures the vortices move to the edge of the condensate and vanish. By fitting the finite -temperature trajectories, we relate the phenomenological damping parameter to the friction coefficients α\alpha and α\alpha^{'}, which are used to describe the interaction between quantised vortices and the normal fluid in superfluid helium.Comment: 16 pages, 18 figures, published in JLT
    corecore