94 research outputs found

    Epigenetic Control of Autophagy by MicroRNAs in Ovarian Cancer

    Get PDF
    Autophagy is a lysosomal-driven catabolic process that contributes to the preservation of cell homeostasis through the regular elimination of cellular damaged, aged, and redundant molecules and organelles. Autophagy plays dual opposite roles in cancer: on one hand it prevents carcinogenesis; on the other hand it confers an advantage to cancer cells to survive under prohibitive conditions. Autophagy has been implicated in ovarian cancer aggressiveness and in ovarian cancer cell chemoresistance and dormancy. Small noncoding microRNAs (miRNAs) regulate gene expression at posttranscriptional level, thus playing an important role in many aspects of cell pathophysiology, including cancerogenesis and cancer progression. Certain miRNAs have recently emerged as important epigenetic modulators of autophagy in cancer cells. The mRNA of several autophagy-related genes contains, in fact, the target sequence for miRNAs belonging to different families, with either oncosuppressive or oncogenic activities. MiRNA profiling studies have identified some miRNAs aberrantly expressed in ovarian cancer tissues that can impact autophagy. In addition, plasma and stroma cell-derived miRNAs in tumour-bearing patients can regulate the expression of relevant autophagy genes in cancer cells. The present review focuses on the potential implications of miRNAs regulating autophagy in ovarian cancer pathogenesis and progression

    Epigenetic Regulation of Nuclear PI-PLC beta1 Signalling Pathway in Low-Risk MDS Patients During Azacitidine Treatment

    Get PDF
    Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by epigenetic abnormalities and therefore treated with demethylating agents [1]. PI-PLCbeta1 has been reported to be a specific target for demethylating therapy in high-risk MDS patients, since azacitidine treatment can be associated with a PI-PLCbeta1 specific promoter demethylation and induction of both PI-PLCbeta1 gene and protein expression [1]. In the present study we investigated the role of epigenetic regulation of PI-PLCbeta1, mainly focusing on the functional role of azacitidine on the structure of the PI-PLCbeta1 promoter. We firstly examined the effect of azacitidine on PI-PLCbeta1 promoter methylation and gene expression in low-risk MDS. Moreover, we studied the expression of key molecules involved in the nuclear inositide signalling pathway, such as Cyclin D3. We also studied the correlation between the demethylating effect of azacitidine and the degree of recruitment to PI-PLCbeta1 promoter of some transcription factors implicated in hematopoietic stem cell proliferation and differentiation, as well as of the Methyl-CpG binding domain proteins (MBDs), which specifically interact with methylated DNA. Taken together, our results hint at a specific involvement of PI-PLCbeta1 in epigenetic mechanisms, and are particularly consistent with the hypothesis of a role for PI-PLCbeta1 in azacitidine- induced myeloid differentiation

    Nuclear phospholipase C β1 signaling, epigenetics and treatments in MDS.

    Get PDF
    Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. Most MDS are characterized by anemia, and a number of cases progresses to acute myeloid leukemia (AML). Indeed, the molecular mechanisms underlying the MDS evolution to AML are still unclear, even though the nuclear signaling elicited by PI-PLCβ1 has been demonstrated to play an important role in the control of the balance between cell cycle progression and apoptosis in MDS cells. Here we review both the role of epigenetic therapy on PI-PLCβ1 promoter and the changes in PI-PLCβ1 expression in MDS patients treated for anemia.Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. Most MDS are characterized by anemia, and a number of cases progresses to acute myeloid leukemia (AML). Indeed, the molecular mechanisms underlying the MDS evolution to AML are still unclear, even though the nuclear signaling elicited by PI-PLCβ1 has been demonstrated to play an important role in the control of the balance between cell cycle progression and apoptosis in MDS cells. Here we review both the role of epigenetic therapy on PI-PLCβ1 promoter and the changes in PI-PLCβ1 expression in MDS patients treated for anemia. © 2012 Elsevier Ltd

    Differential activation of nuclear inositide-dependent signalling pathways during erythropoiesis and myelopoiesis induced by lenalidomide and azacitidine in myelodysplastic syndromes (MDS)

    Get PDF
    Inositide-dependent signalling pathways regulated by phosphoinositide-specific phospholi- pase C (PI-PLC) beta1 have been demonstrated to play important roles in MDS pathogenesis and in cell differentiation (1). Moreover, the MDS therapy aims at inducing myeloid and/or erythroid differentiation of MDS stem cells. Indeed, azacitidine is a demethylating agent that can induce myeloid differentiation. On the other hand, lenalidomide may restore a normal erythropoiesis. The exact molecular mechanisms underlying the effect of azacitidine and lenalidomide in MDS cells are still unclear, although it is clear that these therapies regulate stem cell proliferation, differentiation and apoptosis (2). The combination of azacitidine and lenalidomide in MDS therapy is now under considera- tion, given the capability of both drugs to balance proliferation and differentiation processes (3). In this study we analyzed the molecular effect of this combination therapy on PI-PLC isoenzymes, not only studying PI-PLCbeta1, but also PI-PLCgamma1, that can be associated with erythropoiesis. We analyzed 44 patients diagnosed with high-risk MDS who were given azacitidine and lenalidomide. Given the limited number of cells, we quantified the expression of these molecules by Real-Time PCR analyses and immunocytochemical experiments. Moreover, we carried out cell cycle analyses and studied both PI-PLCbeta1 methylation status and the expression of Globin genes. In our case series, 28/44 patients were evaluable, with an overall response rate of 78.6% (22/28 cases). At a molecular level, a significant increase of PI-PLCbeta1 and/or PI-PLCgamma1 expression was associated with a favourable clinical response to the combination therapy. Responder cases also showed an increase of Beta-globin expression, hinting at a specific contri- bution of lenalidomide on erythroid activation, whilst the frequent demethylation of PI-PLCbeta1 promoter could be specifically linked to azacitidine. Taken together, our results show that the combination of azacitidine and lenalidomide can be important for activating PI-PLC isoenzymes, therefore regulating myeloid and erythroid dif- ferentiation in MDS cells

    Epigenetic regulation of nuclear PLCbeta1 and Cyclin D3 during Azacitidine treatment

    Get PDF
    The Myelodysplastic Syndromes (MDS) are a heterogeneous group of bone marrow disorders characterized by alterations of the hematopoietic stem cells that lead to anemia, neutropenia, bleeding problems and infections. The evidence of a clinical correlation between the presence of a monoallelic gene deletion of Phospholipase Cβ1 (PLCβ1) and the progression of MDS to Acute Myeloid Leukemia (AML) opened new perspectives of research and treatments. Patients affected by MDS with a higher risk of AML evolution have a reduction in the expression of the nuclear PLCβ1, which is also epigenetically relevant in MDS. This strengthens the importance of PLCβ1 localization. In fact, PLCβ1 is a molecular target for hypomethylating agents, such Azacitidine (AZA)(1). High-risk MDS patients that respond to the drug showed an increased expression of nuclear PLCβ1 and its downstream target Cyclin D3 (CCND3), an induction of normal myeloid differentiation, and a better prognosis. Stemming from these data, our goal was to analyze the correlation between CCND3, PLCβ1 and AZA treatment. Firstly, we treated two different cellular lines, AML HL60 and histiocytic lymphoma U937, with AZA 5μM (Ec50 for HL60 cells) for 24 hours. Then, we used Real-Time PCR and Western blot to quantify both gene and protein expression. Moreover, we showed that CCND3 promoter has one CpG island. For this reason, it is possible that AZA could directly affect both PLCβ1 and CCND3 promoters. Therefore, we studied PLCβ1 binding to CCND3 promoter by chromatin immunoprecipitation (CHIP), before and after AZA treatment. Our results evidenced that the recruitment of PLCβ1 to CCND3 promoter is specifically increased after AZA treatment, leading to suppose that PLCβ1 could have a pivotal role in MDS with either a direct or indirect effect on cell cycle, proliferation and differentiation. These complicate relations need future deepening in order to demonstrate how PLCβ1 binding actually regulates CCND3 expression and how much this expression depends on CCND3 direct promoter demethylation and PLCβ1 control

    Response of high-risk MDS to azacitidine and lenalidomide is impacted by baseline and acquired mutations in a cluster of three inositide-specific genes

    Get PDF
    Specific myeloid-related and inositide-specific gene mutations can be linked to myelodysplastic syndromes (MDS) pathogenesis and therapy. Here, 44 higher-risk MDS patients were treated with azacitidine and lenalidomide and mutations analyses were performed at baseline and during the therapy. Results were then correlated to clinical outcome, overall survival (OS), leukemia-free-survival (LFS) and response to therapy. Collectively, 34/44 patients were considered evaluable for response, with an overall response rate of 76.25% (26/34 cases): 17 patients showed a durable response, 9 patients early lost response and 8 patients never responded. The most frequently mutated genes were ASXL1, TET2, RUNX1, and SRSF2. All patients early losing response, as well as cases never responding, acquired the same 3 point mutations during therapy, affecting respectively PIK3CD (D133E), AKT3 (D280G), and PLCG2 (Q548R) genes, that regulate cell proliferation and differentiation. Moreover, Kaplan–Meier analyses revealed that this mutated cluster was significantly associated with a shorter OS, LFS, and duration of response. All in all, a common mutated cluster affecting 3 inositide-specific genes is significantly associated with loss of response to azacitidine and lenalidomide therapy in higher risk MDS. Further studies are warranted to confirm these data and to further analyze the functional role of this 3-gene cluster

    Nuclear Translocation of PKC is Associated with Cell Cycle Arrest and Erythroid Differentiation in Myelodysplastic Syndromes (MDSs)

    Get PDF
    PI-PLC beta 1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLC beta 1 reduces the expression of PKC-alpha, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLC beta 1/PKC-alpha signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced gamma/beta-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-alpha. Moreover, lenalidomide could induce a selective G(0)/G(1) arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLC beta 1/PKC-alpha signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies
    corecore