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Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell
disorders mainly affecting older adult patients, show ineffective
hematopoiesis inoneormoreof the lineagesof thebonemarrow.Most
MDS are characterizedbyanemia, and anumberof cases progresses to
acute myeloid leukemia (AML). Indeed, the molecular mechanisms
underlyingtheMDSevolution toAMLare still unclear, even though the
nuclear signaling elicited by PI-PLCb1 has been demonstrated to play
an important role in the control of the balance between cell cycle
progression and apoptosis in MDS cells. Here we review both the role
of epigenetic therapy on PI-PLCb1 promoter and the changes in PI-
PLCb1 expression in MDS patients treated for anemia.

� 2012 Elsevier Ltd. All rights reserved.
Introduction

Phosphoinositides (PIs) regulate several important cellular processes at the plasma membrane, but
also at the nuclear level, within the nuclear speckles. Indeed, nuclear inositides are essential cofactors
for DNA repair, transcription regulation, and RNA dynamics (Cocco et al., 2011, Follo et al., 2011a,
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Marmiroli et al., 1994, Martelli et al., 1992). Among the enzymes of the nuclear PI cycle,
phosphoinositide-specific phospholipase C (PI-PLC) b1 plays an essential role in cell cycle, as a check-
point in the G1 phase (Faenza et al., 2000, Faenza et al., 2007) and in the G2/M transition (Fiume et al.,
2009). The signaling pathway elicited by PI-PLCb1 and its downstream target Cyclin D3 has been
implicated in the hematopoietic system, since it can regulate the hematopoietic stem cell proliferation
(Faenza et al., 2002, Suh et al., 2008) and, more importantly, the early stages of the hematopoietic
differentiation (Cooper et al., 2006, Furukawa, 2002).

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders that
are characterized by ineffective hematopoiesis, progressive bone marrow failure, peripheral blood
cytopenias, and a propensity for leukemic transformation (Lindsley and Ebert, 2012). The management
of MDS has improved in recent years, with the availability of several active treatments that can alter the
natural history of the disease and improve quality of life (Lyons, 2012). However, given the limited
number of approved therapies for MDS, effective management of each treatment option is critical to
provide each patient the best opportunity for successful treatment (Kurtin et al., 2012), above all because
the identification of theMDS riskmay change the therapeutic approach. In case of symptomatic anemia,
especially in low-riskMDS cases, the therapy aims at the improvement of both peripheral cytopenia and
quality of life (Jabbour et al., 2008), that is why these cases aremainly treatedwith Erythropoietin (EPO).
On the other hand, high-risk MDS patients need to increase survival and delay the AML evolution, and
are therefore usually administered demethylating therapies (Morgan and Reuter, 2006).

Nuclear PI-PLCb1 and MDS: demethylating therapy

Epigenetic mechanisms contribute to regulate gene expression and assure the correct inheritance of
DNA information. Among epigenetic processes, promoter DNA hypermethylation is a common hall-
mark of cancer that can be reversed by the epigenetic therapy with demethylating agents. In the last
few years, two demethylating agents (azacitidine, decitabine), alone or in combination with histone
deacetylase inhibitors (valproic acid and vorinostat) have been successfully tested in MDS therapy
(Fenaux et al., 2009, Fenaux et al., 2007, Griffiths and Gore, 2008, Kaminskas et al., 2005, Park et al.,
2008, Perl et al., 2009, Sekeres et al., 2008).

Azacitidine is a DNA methyltransferase inhibitor currently approved for the treatment of high-risk
MDS (Kaminskas et al., 2005, Silverman and Mufti, 2005) and under experimental evaluation for low-
risk MDS (Musto et al., 2010) as well as of other hematologic malignancies (Quintas-Cardama et al.,
2008). Indeed, azacitidine has been reported to have a significant impact on the overall survival and
delay the progression toward AML (Fenaux et al., 2009). At a molecular level, azacitidine specifically
induces DNA hypomethylation, in order to resume cellular differentiation of cancer cells (Silverman,
2001). In fact, azacitidine induces the hypomethylation of several silenced genes, mostly implicated
in cell cycle, such as p15/INK4B, p21WAF/Cip1 and p73 (Daskalakis et al., 2002, Raj et al., 2007).
Nevertheless, these are not yet reliable markers of responsiveness, and therefore many investigators
are now applying novel methods aiming at the identification of new therapeutic targets in hemato-
logical malignancies (Maraldi et al., 2011), and are studying new molecular processes affecting MDS.
This is the case for PI-PLCb1 (Follo et al., 2009), which can be considered as a specific target of aza-
citidine. In fact, high-risk MDS treated with this drug and showing a favorable clinical outcome
frequently display a PI-PLCb1 promoter hyper-methylation at diagnosis, and a decrease in PI-PLCb1
methylation during the therapy. More interestingly, mRNA levels follow and anticipate the clinical
outcome, so that the variations in PI-PLCb1 expression, increase or decrease, can be detectable prior to
the clinical improvement or worsening, respectively. This is particularly appealing, since some cycles of
azacitidine are usually needed in order to assess the clinical response.

At a clinical level, also the combination of azacitidine and valproic acid has been tested, because it
might offer a better efficacy by modulating the methylation and acetylation states of silenced genes
(Fenaux et al., 2009). At a molecular level, this combination therapy has been shown to induce a major
demethylation of PI-PLCb1 promoter and an increased reactivation of both PI-PLCb1 gene and protein
expression in responder patients, as compared with azacitidine alone (Follo et al., 2011b).

As mentioned above, azacitidine can now be administered to all subsets of MDS, even though there
is very little data in the use of this drug in lower risk MDS (Garcia-Manero, 2011). That is why
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innovative molecular mechanisms underlying the effect of epigenetic therapy have to be investigated.
Recently, it has been shown that PI-PLCb1 is affected by epigenetic therapy also in low-risk MDS (Follo
et al., 2012b), where also a molecular mechanism involving PI-PLCb1 has been analyzed. In that study,
the correlation between the demethylating effect of azacitidine and the degree of recruitment to PI-
PLCb1 promoter of some transcription factors implicated in hematopoietic stem cell proliferation and
differentiation was investigated, by applying a chromatin immunoprecipitation method. In particular,
MDS patients responding to azacitidine therapy were reported to show a specific recruitment to PI-
PLCb1 promoter of myeloid zinc finger (MZF)-1, but not c-myb. This is particularly appealing, since
MZF-1 plays a role in myeloid differentiation (Morris et al., 1995), whereas c-myb is specifically
associated with hematopoietic stem cell proliferation (Lidonnici et al., 2008), therefore confirming the
involvement of PI-PLCb1 in azacitidine-induced myeloid differentiation (Fig. 1).

Nuclear PI-PLCb1 and MDS: EPO therapy

EPO is currently used in the treatment of low-risk MDS patients, mainly with the aim of correcting
anemia (Elliott, 2011), since it regulates cell metabolism by balancing cell cycle activation and apoptosis
(Bejar et al., 2011, Marzo et al., 2008). Indeed, this is particularly important for low-risk MDS patients,
who usually show an increased apoptosis and a low proliferation rate, whichmay be reversed in case of
leukemic evolution (Kerbauy and Deeg, 2007).

Little is known about the exact molecular mechanisms underlying the effect of EPO in low-risk MDS
cells and the reasons why some patients do not respond to this treatment, even though some studies
recently investigated whether EPO responder and non responder patients have different gene
expression profiles (Cortelezzi et al., 2008). At a molecular level, EPO activates the EPO receptor, which
is in turn linked to the activation of both Akt and PI-PLCg1 (Marshall et al., 2000, Wang et al., 2006),
whose signaling pathways are associated with proliferation and leukemogenesis (Martelli et al., 2011).
In high-risk MDS patients, our group demonstrated the specific activation of Akt, mTOR, and its
downstream targets (Follo et al., 2007, Nyakern et al., 2006). Moreover, by analyzing the same case
series, an inverse correlation between Akt and PI-PLCb1 was also postulated (Follo et al., 2008). This
hypothesis was confirmed by recent investigations, performed on low-risk MDS under treatment with
EPO and demonstrating that Akt activation is linked to PI-PLCb1 down-regulation (Follo et al., 2012a).
Fig. 1. Role of nuclear PI-PLCb1 in MDS hematopoietic differentiation. PI-PLCb1 promoter hypomethylation is associated with
myeloid differentiation, whereas PI-PLCb1 is a negative regulator of erythroid differentiation, therefore hinting at a role for PI-PLCb1
as a modifier in MDS hematopoiesis.
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In that study, EPO responder patients showed an activation of Akt, as expected, whereas the same cases
displayed a PI-PLCb1 decrease.

Interestingly, the decrease of PI-PLCb1 was statistically significant after 4–6 months of therapy,
which is consistent with previous findings showing that PI-PLCb1, after an early transient increase, is
down-regulated in primary human erythroblasts treatedwith EPO for up to 96 hours (di Giacomo et al.,
2005), therefore suggesting that PI-PLCb1 could be required at the beginning of erythroid differenti-
ation but is dispensable, if not inhibitory, at later stages (Fig. 1). At the same time, also the Akt phos-
phorylation which we detected in EPO responder cases is in agreement with other previous in vitro
studies showing that EPO can induce a nuclear translocation of active Akt, which is required for
erythroid differentiation (Missiroli et al., 2009). Taken together, these results not only confirm the
inverse correlation between PI-PLCb1 and Akt, but also hint at a role for PI-PLCb1 as a negative
regulator of erythroid differentiation, as also previously hypothesized by in vitro studies in eryth-
roleukemia cells (Faenza et al., 2002).

Conclusions

Nuclear PI-PLCb1 plays an important role in cell proliferation and differentiation, in normal and
pathological conditions. Indeed, recent findings indicate that the nuclear inositide signaling pathways
might contribute to the further clarification of the therapeutic activity of some drugs currently used in
MDS, such as azacitidine or EPO. In fact, not only PI-PLCb1 promoter hypermethylation has been
associated with the progression of high-risk MDS into AML, but also the effect of EPO treatment on Akt
activation and PI-PLCb1 expression strengthens the contention that a correct nuclear lipid signaling is
essential for physiological processes such as cell growth and differentiation in MDS. Further investi-
gations are needed to fully understand the molecular mechanisms underlying the MDS progression
into AML, but it is now clear that PI-PLCb1 is a modifier in MDS pathogenesis, since it is a positive
regulator of myeloid differentiation and a negative regulator of erythroid differentiation.
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