752 research outputs found
Solving QCD evolution equations in rapidity space with Markovian Monte Carlo
This work covers methodology of solving QCD evolution equation of the parton
distribution using Markovian Monte Carlo (MMC) algorithms in a class of models
ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test
the other more sophisticated Monte Carlo programs, the so-called Constrained
Monte Carlo (CMC) programs, which will be used as a building block in the
parton shower MC. This is why the mapping of the evolution variables (eikonal
variable and evolution time) into four-momenta is also defined and tested. The
evolution time is identified with the rapidity variable of the emitted parton.
The presented MMCs are tested independently, with ~0.1% precision, against the
non-MC program APCheb especially devised for this purpose.Comment: version compatible with with the erratum in Acta Physica Polonic
An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA) in contaminated wounds
Background Endogenous nitric oxide (NO) kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.5%) and sodium nitrite (3%) creams co-applied for 5 days to 15 wounds in an observational prospective pilot study of 8 patients. Findings Following treatment with topical citric acid and sodium nitrite, 9 of 15 wounds (60%) and 3 of 8 patients (37%) were cleared of infection. MRSA isolates from these patients were all sensitive to acidified nitrite in vitro compared to methicillin-sensitive S. aureus and a reference strain of MRSA. Conclusions Nitric oxide and acidified nitrite offer a novel therapy for control of MRSA in wounds. Wounds that were not cleared of infection may have been re-contaminated or the bioavailability of acidified nitrite impaired by local factors in the tissue
Edge detection versus densitometry in the quantitative assessment of stenosis phantoms: an in vivo comparison in procine coronary arteries
The aim of this study was the in vivo validation and comparison of the geometric and densitometric technique of a computer-assisted automatic quantitative angiographic system (CAAS system). In six Landrace Yorkshire pigs (45 to 55 kg), precision-drilled phantoms with a circular lumen of 0.5, 0.7, 1.0, 1.4, and 1.9 mm were percutaneously introduced into the left anterior descending or left circumflex coronary artery. Twenty-eight coronary angiograms obtained with the phantom in a wedged intracoronary position could be quantitatively analyzed. Minimal lumen diameter, minimal cross-sectional area, percent diameter stenosis, and cross-sectional area stenosis were automatically measured with both the geometric and densitometric technique and were compared with the known phantom dimensions. When minimal lumen diameter was measured using the geometric approach, a nonsignificant underestimation of the phantom size was observed, with a mean difference of -0.06 +/- 0.14 mm. The larger mean difference observed with videodensitometry (-0.11 +/- 0.20 mm) was the result of the failure of the technique to differentiate the low lumen videodensities of two phantoms of smaller size (0.5 and 0.7 mm) from a dense background. Percent cross-sectional area stenosis measured with the two techniques showed a good correlation with the corresponding phantom measurements (mean difference between percent cross-sectional area stenosis calculated from the quantitative angiographic measurements and the corresponding phantom dimensions was equal to 2 +/- 6% for both techniques, correlation coefficient = 0.93 with both techniques, SEE = 5% with the geometric technique and 6% with the densitometric approach).(ABSTRACT TRUNCATED AT 250 WORDS
Electronic structures of free-standing nanowires made from indirect bandgap semiconductor gallium phosphide
We present a theoretical study of the electronic structures of freestanding
nanowires made from gallium phosphide (GaP)--a III-V semiconductor with an
indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and
rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal
cross sections. Based on tight binding models, both the band structures and
wave functions of the nanowires are calculated. For the [001]-oriented GaP
nanowires, the bands show anti-crossing structures, while the bands of the
[111]-oriented nanowires display crossing structures. Two minima are observed
in the conduction bands, while the maximum of the valence bands is always at
the -point. Using double group theory, we analyze the symmetry
properties of the lowest conduction band states and highest valence band states
of GaP nanowires with different sizes and directions. The band state wave
functions of the lowest conduction bands and the highest valence bands of the
nanowires are evaluated by spatial probability distributions. For practical
use, we fit the confinement energies of the electrons and holes in the
nanowires to obtain an empirical formula.Comment: 19 pages, 10 figure
Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC
Precision studies of the production of a high-transverse momentum lepton in
association with missing energy at hadron colliders require that electroweak
and QCD higher-order contributions are simultaneously taken into account in
theoretical predictions and data analysis. Here we present a detailed
phenomenological study of the impact of electroweak and strong contributions,
as well as of their combination, to all the observables relevant for the
various facets of the p\smartpap \to {\rm lepton} + X physics programme at
hadron colliders, including luminosity monitoring and Parton Distribution
Functions constraint, precision physics and search for new physics signals.
We provide a theoretical recipe to carefully combine electroweak and strong
corrections, that are mandatory in view of the challenging experimental
accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC,
and discuss the uncertainty inherent the combination. We conclude that the
theoretical accuracy of our calculation can be conservatively estimated to be
about 2% for standard event selections at the Tevatron and the LHC, and about
5% in the very high transverse mass/lepton transverse momentum tails. We
also provide arguments for a more aggressive error estimate (about 1% and 3%,
respectively) and conclude that in order to attain a one per cent accuracy: 1)
exact mixed corrections should be computed in
addition to the already available NNLO QCD contributions and two-loop
electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be
coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
Coronary arteriography for quantitative analysis: experimental and clinical comparison of cinefilm and video recordings.
Although use of videotape for the recording of coronary angiograms continues to grow, the validity of quantitative coronary angiographic analysis of video images remains unknown. To estimate the realibility of angiographic images recorded on videotapes, experimental and clinical angiograms were recorded simultaneously on both 35 mm cinefilm and super-VHS videotape with normal images and with spatial filtering of the images (edge enhancement) on a digital cardiac imaging system. The experimental angiographic studies were performed with plexi
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM
We present a next-to-leading order calculation of Higgs boson production plus
one and two jets via gluon fusion interfaced to shower Monte Carlo programs,
implemented according to the POWHEG method. For this implementation we have
used a new interface of the POWHEG BOX with MadGraph4, that generates the codes
for generic Born and real processes automatically. The virtual corrections have
been taken from the MCFM code. We carry out a simple phenomenological study of
our generators, comparing them among each other and with fixed next-to-leading
order results.Comment: 27 pages, 21 figure
Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions
Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
- …
