656 research outputs found

    Polymorphous Si thin films from radio frequency plasmas of SiH4 diluted in Ar: A study by transmission electron microscopy and Raman spectroscopy

    Get PDF
    In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating

    Approximating Mexican highways with slime mould

    Full text link
    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. Geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients how much structure of Physarum protoplasmic network correspond to structure of Mexican Federal highway network? To find an answer undertook a series of laboratory experiments with living Physarum polycephalum. We represent geographical locations of major cities by oat flakes, place a piece of plasmodium in Mexico city area, record the plasmodium's foraging behavior and extract topology of nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principle highways. Ideas and results of the paper may contribute towards future developments in bio-inspired road planning

    Rebaling of silage and haylage and its effects on forage microbial and chemical composition - A pilot study

    Get PDF
    Use of big bale silage and haylage can be difficult on farms where daily forage consumption is comparatively low as speed of deterioration of forage after bale opening may be faster than feed-out rate. Production of smaller bales at harvest is possible, but expensive and work-intensive. Therefore, a pilot study of rebaling forage stored in big bales to smaller bales was conducted. Three separate experiments were included, where microbial and chemical composition of silage and haylage was studied before and after rebaling. In Experiment III, residual big bale forage stored and opened together with rebaled forage was included. Results showed that rebaled haylage and silage had higher yeast counts compared to initial forage; however, residual bales in Experiment III had yeast counts similar to rebaled forage, indicating an effect of storage time rather than of rebaling. In Experiment II, mould counts were higher in rebaled compared to initial silage, but not in haylage. Chemical composition was similar in initial and rebaled forage except for ammonia-N. In Experiment III, ammonia-N was higher in rebaled compared to initial and residual forage and was the only chemical variable affected by rebaling. Bale temperature during aerobic storage followed ambient temperature until day 6-8 in Experiment I and until day 14 in Experiment III where ambient temperature was lower. In conclusion, rebaling can be done without large changes in chemical composition of the forage, but yeast and mould counts may be higher in rebaled forage, and this risk should be considered when using this procedure

    THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE

    Get PDF
    Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research

    Morphological Instabilities in a growing Yeast Colony: Experiment and Theory

    Get PDF
    We study the growth of colonies of the yeast Pichia membranaefaciens on agarose film. The growth conditions are controlled in a setup where nutrients are supplied through an agarose film suspended over a solution of nutrients. As the thickness of the agarose film is varied, the morphology of the front of the colony changes. The growth of the front is modeled by coupling it to a diffusive field of inhibitory metabolites. Qualitative agreement with experiments suggests that such a coupling is responsible for the observed instability of the front.Comment: RevTex, 4 pages and 3 figure

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Microbial Enrichment of a Novel Growing Substrate and its Effect on Plant Growth

    Get PDF
    The quality of torrefied grass fibers (TGF) as a new potting soil ingredient was tested in a greenhouse experiment. TGF was colonized with previously selected microorganisms. Four colonization treatments were compared: (1) no inoculants, (2) the fungus Coniochaeta ligniaria F/TGF15 alone, (3) the fungus followed by inoculation with two selected bacteria, and (4) the fungus with seven selected bacteria. Cultivation-based and DNA-based methods, i.e., PCR-DGGE and BOX-PCR, were applied to assess the bacterial and fungal communities established in the TGF. Although colonization was not performed under sterile conditions, all inoculated strains were recovered from TGF up to 26 days incubation. Stable fungal and bacterial populations of 108 and 109 CFU/g TGF, respectively, were reached. As a side effect of the torrefaction process that aimed at the chemical stabilization of grass fibers, potentially phytotoxic compounds were generated. These phytotoxic compounds were cold-extracted from the fibers and analyzed by gas chromatography mass spectrometry. Four of 15 target compounds that had previously been found in the extract of TGF were encountered, namely phenol, 2-methoxyphenol, benzopyran-2-one, and tetrahydro-5,6,7,7a-benzofuranone. The concentration of these compounds decreased significantly during incubation. The colonized TGF was mixed with peat (P) in a range of 100%:0%, 50%:50%, 20%:80%, and 0%:100% TGF/P (w/w), respectively, to assess suitability for plant growth. Germination of tomato seeds was assessed three times, i.e., with inoculated TGF that had been incubated for 12, 21, and 26 days. In these tests, 90–100% of the seeds germinated in 50%:50% and 20%:80% TGF/P, whereas on average only 50% of the seeds germinated in pure TGF. Germination was not improved by the microbial inoculants. However, plant fresh weight as well as leaf area of 28-day-old tomato plants were significantly increased in all treatments where C. ligniaria F/TGF15 was inoculated compared to the control treatment without microbial inoculants. Colonization with C. ligniaria also protected the substrate from uncontrolled colonization by other fungi. The excellent colonization of TGF by the selected plant-health promoting bacteria in combination with the fungus C. ligniaria offers the possibility to create disease suppressive substrate, meanwhile replacing 20% to 50% of peat in potting soil by TGF

    Sticky knowledge: A possible model for investigating implementation in healthcare contexts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In health care, a well recognized gap exists between what we know should be done based on accumulated evidence and what we actually do in practice. A body of empirical literature shows organizations, like individuals, are difficult to change. In the business literature, knowledge management and transfer has become an established area of theory and practice, whilst in healthcare it is only starting to establish a firm footing. Knowledge has become a business resource, and knowledge management theorists and practitioners have examined how knowledge moves in organisations, how it is shared, and how the return on knowledge capital can be maximised to create competitive advantage. New models are being considered, and we wanted to explore the applicability of one of these conceptual models to the implementation of evidence-based practice in healthcare systems.</p> <p>Methods</p> <p>The application of a conceptual model called sticky knowledge, based on an integration of communication theory and knowledge transfer milestones, into a scenario of attempting knowledge transfer in primary care.</p> <p>Results</p> <p>We describe Szulanski's model, the empirical work he conducted, and illustrate its potential applicability with a hypothetical healthcare example based on improving palliative care services. We follow a doctor through two different posts and analyse aspects of knowledge transfer in different primary care settings. The factors included in the sticky knowledge model include: causal ambiguity, unproven knowledge, motivation of source, credibility of source, recipient motivation, recipient absorptive capacity, recipient retentive capacity, barren organisational context, and arduous relationship between source and recipient. We found that we could apply all these factors to the difficulty of implementing new knowledge into practice in primary care settings.</p> <p>Discussion</p> <p>Szulanski argues that knowledge factors play a greater role in the success or failure of a knowledge transfer than has been suspected, and we consider that this conjecture requires further empirical work in healthcare settings.</p
    corecore