39 research outputs found

    Prueba de estrés en banco privado nacional : riesgo de crédito, riesgo de tasa de interés y riesgo de liquidez

    Get PDF
    Stress tests are a measure of risk exposure, they are considered a useful and increasingly popular method within the financial system since they not only identify vulnerabilities, but also analyze the resistance of banks to adverse events. This paper develops and analyzes a variety of stress tests in one of the four largest banks of the Ecuadorian economy at present...Las pruebas de estrés son una medida de exposición al riesgo, se consideran un método útil y cada vez más popular dentro del sistema financiero ya que no solamente identifican vulnerabilidades, sino también analizan la resistencia de los bancos frente a eventos adversos. El presente trabajo desarrolla y analiza una variedad de pruebas de estrés en uno de los cuatro bancos más grandes de la economía ecuatoriana en la actualidad..

    Essential residues in the H-NS binding site of Hha, a co-regulator of horizontally acquired genes in Enterobacteria

    Get PDF
    Proteins of the Hha/YmoA family co-regulate with H-NS the expression of horizontally acquired genes in Enterobacteria. Systematic mutations of conserved acidic residues in Hha have allowed the identification of D48 as an essential residue for H-NS binding and the involvement of E25. Mutations of these residues resulted in deregulation of sensitive genes in vivo. D48 is only partially solvent accessible, yet it defines the functional binding interface between Hha and H-NS confirming that Hha has to undergo a conformational change to bind H-NS. Exposed acidic residues, such as E25, may electrostatically facilitate and direct the approach of Hha to the positively charged region of H-NS enabling the formation of the final complex when D48 becomes accessible by a conformational change of Hha

    Trypanosoma brucei colonises the tsetse gut via an immature peritrophic matrix in the proventriculus

    Get PDF
    Abstract The peritrophic matrix (PM) of haematophagus insects is a chitinous structure that surrounds the bloodmeal, forming a protective barrier against oral pathogens and abrasive particles. To establish an infection in the tsetse midgut, Trypanosoma brucei must colonise the ectoperitrophic space (ES), located between the PM and gut epithelium. Although unproven, it is generally accepted that trypanosomes reach the ES by directly penetrating the PM in the anterior midgut. Here we revisited this event by employing novel fluorescence and electron microscopy methodologies and found that instead, trypanosomes reach the ES via the newly secreted PM in the tsetse proventriculus. Within this model, parasites colonising the proventriculus can either migrate to the ES or become trapped within PM layers forming cysts that move along the entire gut as the PM gets remodelled. Early proventricular colonisation appears to be promoted by unidentified factors in trypanosome-infected blood, resulting in higher salivary gland infections and potentially increasing parasite transmission

    Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination

    Get PDF
    Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways

    Progress in mucosal immunization for protection against pneumococcal pneumonia

    Get PDF
    Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses

    Pneumococcal colonization impairs mucosal immune responses to live attenuated influenza vaccine.

    Get PDF
    Influenza virus infections affect millions of people annually, and current available vaccines provide varying rates of protection. However, the way in which the nasal microbiota, particularly established pneumococcal colonization, shape the response to influenza vaccination is not yet fully understood. In this study, we inoculated healthy adults with live Streptococcus pneumoniae and vaccinated them 3 days later with either tetravalent-inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). Vaccine-induced immune responses were assessed in nose, blood, and lung. Nasal pneumococcal colonization had no impact upon TIV-induced antibody responses to influenza, which manifested in all compartments. However, experimentally induced pneumococcal colonization dampened LAIV-mediated mucosal antibody responses, primarily IgA in the nose and IgG in the lung. Pulmonary influenza-specific cellular responses were more apparent in the LAIV group compared with either the TIV or an unvaccinated group. These results indicate that TIV and LAIV elicit differential immunity to adults and that LAIV immunogenicity is diminished by the nasal presence of S. pneumoniae. Therefore, nasopharyngeal pneumococcal colonization may affect LAIV efficacy

    Vacuna tetravalente de influenza en los programas nacionales de inmunización para los países de América Latina

    Get PDF
    Since 2012-2013 influenza season, World Health Organization (who) recommends the formulation of tetravalent vaccines. Globally, many countries already use tetravalent vaccines in their national immunization programs, while in Latin America only a small number. Two Influenza b lineages co-circulate, their epidemiological behavior is unpredictable. On average they represent 22.6% of influenza cases and more than 50% in predominant seasons. The lack of concordance between recommended and circulating strains was 25 and 32% in the 2010-2017 and 2000-2013 seasons, respectively. There are no clinical differences between influenza A and B. It occurs more frequently from five to 19 years of age. Influenza b has a higher proportion of attributable deaths than influenza a (1.1 vs. 0.4%), or 2.65 (95% ci 1.18-5.94). A greater number of hospitalizations when the strains mismatch (46.3 vs. 28.5%; p <.0001). Different evaluations have demonstrated its cost effectiveness. The compilation of this information supports the use of quadrivalent vaccines in Latin American countries.Revisión por pare

    Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial

    Get PDF
    Background: Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer–BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. Methods: Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative at baseline. Safety analyses were done among participants receiving at least one dose of a study vaccine. The trial is registered with ISRCTN, 69254139. Findings: Between Feb 11 and Feb 26, 2021, 830 participants were enrolled and randomised, including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57·8 years (SD 4·7), with 212 (46%) female participants and 117 (25%) from ethnic minorities. At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9·2 (one-sided 97·5% CI 7·5 to ∞). In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0·51 (one-sided 97·5% CI 0·43 to ∞). Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation. Interpretation: Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd) with proven efficacy against COVID-19 disease and hospitalisation. Along with the higher immunogenicity of ChAd/BNT compared with ChAD/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines. Funding: UK Vaccine Task Force and National Institute for Health Research

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
    corecore